Self-Driving Cars: The Next Revolution

Johnson WANG

Infotainment Marketing Manager Automotive Product Group Greater China & South Asia Region STMicroelectronics

STMicroelectronics 2

- Among the world's largest semiconductor companies
- Serving over 100,000 customers across the globe
- 2018 revenues of \$9.66B, with year-on-year growth of 15.8%
- Listed: NYSE, Euronext Paris and Borsa Italiana, Milan
- Signatory of the United Nations Global Compact (UNGC), Member of the Responsible Business Alliance (RBA)

- ~ 7,400 people working in R&D
- 11 manufacturing sites
- Over 80 sales & marketing offices

Smart Driving Success

Our Key Ingredients: Technologies, Products... Solutions!

Automotive & Transportation Market Trend Light Vehicle and Automotive Semiconductor Market

Region	2017	2022	CAGR %	
AMERICA	20.4	22.2	1.5%	
APAC	49.9	57.2	2.8%	
EMEA	24.9	28.2	2.5%	
Total	95.1	107.4	2.4%	

Region	on 2017		CAGR %	
AMERICA	7.9	11.0	7.0%	
APAC	14.8	21.2	7.5%	
EMEA	9.9	13.4	6.3%	
Total	32.5	45.6	7.0%	

Source: Strategy Analytics – May 2018 LMCA – June 2018

4

Automotive & Transportation Market Trend **Growing Double Speed**

BODY

0.0

Cumulated Growth Rate vs 2016

Growth by Application CAAGR +7.4% '17 6.2 safeth 11.3 Power... 6.6 10.3 Driver... 7.5 9.9 3.6 Chassis 3.8

5.0

2017

Automotive Semiconductor Demand

Safety App. Double digit Growth CAAGR +12.7% Powertrain App. Growth CAAGR: +9.1%

8.6

10.0

2022

Source: Strategy Analytics - July 2018 LMCA – June 2018

11.3

15.0

5

ST is Making Driving Safer

Autonomous Driving

The Need for Safer Driving

Annual global road crash statistics

- 8
- Nearly 1.3 million people die in road crashes each year, on average 3,287 deaths a day
- An additional 20–50 million are injured or disabled
- Road traffic crashes rank as the 9th leading cause of death and account for 2.2% of all deaths globally
- Road crashes are the leading cause of death among young people ages 15–29, and the second leading cause of death worldwide among young people ages 5–14
- Road crashes cost USD \$518 billion globally, costing individual countries from 1–2% of their annual GDP
- About 94% of accidents caused by human error

Source: Association for Safe International Road Travel

The Need for Safer Driving

Road accidents

deaths per year due to road accidents

of accidents caused by human error

World Urbanization – Mexico City – An Example

8.6 million intercity population21.2 million greater city population

increase in travel time between 2015 to 2016

extra travel time per day due to congestion

Pollution

Congestion

Parking

Safety

The 5 Levels of Vehicle Automation

Source: SAE standard J3016

Advanced Driver Assistance Systems

One of the Fastest Automotive Growth Areas

- ADAS demand forecast has increased in the long term, by up to 2.9% in 2025
- The main reason for this increase is that the LDWS and Distance Warning forecasts have been increased after feedback from clients that they were seeing OEMs increasing their orders for these systems

Advanced Driver Assistance Systems Total ADAS Value Per Vehicle (\$)

• Averaged across all vehicles, the value of ADAS features per vehicle will grow from \$160 in 2016 to \$514 by 2025

Advanced Driver Assistance Systems Growth Areas – System Types

- Distance Warning to see best combination of growth and market size includes AEB
- Strong growth in Drowsiness Monitoring / DMS solutions
- New "Other" systems still emerging in 2022 high growth rate due to current tiny market size

Advanced Driver Assistance Systems Growth Areas – Sensors (Units)

- Camera unit growth slower due to maturity of rear-camera applications. LiDAR growth strongest of the volume sensors
- Ultrasonic sensors not included in above charts: there is still growth here (albeit slowing), reaching over 336 million sensors by 2025

Autonomous Driving Opportunity Silicon Content

Autonomous Driving Content increase by ADAS levels

Source: Strategy Analytics and ST

ADAS Overview

Advanced Driver Assistance Systems

Camera and radar coupled with V2X, Telematics and GNSS* – Sensor Fusion

* GNSS: Global Navigation Satellite System

Crash Avoidance Technologies & Effectiveness

Automatic brake Lane departure		Blind spot	Headlight	
Q	Q	((**)	Q	

% Incidence	Automatic brake	Lane departure	Blind spot	Headlight
Rear end (29%)				
Crossing (24%)				
Off road (19%)				
Lane (12%)				
Animal 6%)				
Wrong sense (2%)				
Reversing (2%)				
Ped/cyclist (2%)				

Source: NHTSA

Benefits of Collision Avoidance

Source: IHS

Autonomous Driving : ST Inside

Vision Based Systems 20

- Richest source of raw data about the scene - only sensor that can reflect the true complexity of the scene.
- The lowest cost sensor nothing can beat it, not today and not in the future.
- Cameras are getting better higher dynamic range, higher resolution
- Combination of Radars / Lidar* / Ultrasonic: for redundancy, robustness

*Lidar: Light detection and ranging

The Next Phase for Vision Technology

- From sensing to comprehensive perception
- Machine learning used already for object sensing
- Autonomous driving needs
 - Path planning based on holistic cues
 - Dynamic following of the drivable area
- Deep learning is now being applied

Machine Vision : ST & Mobileye 22

EyeQ3 [™] 3 rd Generation vision processor		EyeQ4™ 4 th Generation enables
Detection of driving lanes		Detection of more objects, more precisely
 Recognition of traffic signs Detection of pedastrians and evaluate 		More features required for automated driving Free-space Estimation, Road Profile
 Detection of pedestinans and cyclists Seeing obstacles how the human eveloses 		Reconstruction
them MOBILEYE		 Monitoring of environmental elements (fog, ic rain) and their safety impact
 Adapting cruise speed 	Partnership	Detailed understanding of the road conditions
 Emergency braking when car ahead slows suddenly 		allowing automatic suspension and steering adjustment
		 Highly automated vehicles

EyeQ5™

The Road to Full Autonomous Driving: Mobileye and ST to Develop EyeQ®5 SoC targeting Sensor Fusion Central Computer for Autonomous Vehicles

Rear and Surround Vision Systems

VG6640 HDR Sensor and STV0991 Image Processor

High performances HDR sensor & versatile system-on-chip with advanced and instant HDR image signal processing

Compact, low component count & low energy automotive camera system

New smart camera system designed to help customers develop secure and **advanced automotive camera applications**

ST Imaging Automotive Offer 24

ST Imaging Automotive Offer 25

Building on our Differentiated Technology Portfolio

Sensing & Viewing Camera

R	olling Shutter			Gl	obal Shu
	 FSI, 3.75um 132dB Staggered HDR Low Noise High Sensitivity 	 B: 12 No Lo Hi FI 	SI, 3.2um I5dB o Memory ow Noise igh Sensitivity icker Free		 FSI, 3.2u 96dB HDR Low Nois High MT Multi-RO

i	obal Shutter			
	• FSI, 3.2um	• 3D, 3um		
	• 96dB	• 96dB		
	• HDR	• HDR		
	Low Noise	 Low Noise 		
	High MTF	High MTF		
	Multi-ROI / expo	Embedded Machine Vision		

FlightSense™

- #1 ToF supplier >450Mu shipped
- 40nm & 3D CMOS SPAD
- In-Cabin all-in-one ToF module with optics, VCSEL, driver, sensor
- · LIDAR integrated SoC receiver solution

Hi-Res Thermal Camera : ST & ADASKY

Based on micro-bolometric thermal imaging technology (FIR)

- Complete solution Camera to Computer Vision
- Passive technology
- Shutterless technology
- VGA @ 60fps
- Lowest power consumption (<750mW)
- Unique sunburn protection algorithms
- Dedicated ISP for superior image quality (ADA1)
- Built for automotive ISO 26262 ASIL-B ready
- Scalable solution enables cost reduction
- State of the art Computer Vision algorithms
- Large annotated data sets for machine learning

System description

- Thermal imagery based Advanced Driver Assistance System (ADAS) for avoidance of forward collisions with 3d party objects: Pedestrians, bicyclists, animals, general objects, moving and static vehicles.
- The system will detect and warn about obstacles up to 130 meters, 24/7 in all weather conditions. Main advantage in night time and extreme weather.

Silicon implementation

- 28nm FD-SOI
- 12x12 250pin, 0.65pitch FlipChip BGA
- ISO-26262 ASIL-B ready
- AEC-Q100 grade 2 (-40c to 105c)

Radar Systems 27

Long and Short Range Radar ICs

A radar system can use 2 classes of sensors to provide complete coverage

Short-range radar (24GHz)

- Cover almost the entire azimuthal angle and can see all around the car (100° to 360°)
- Distances up to several tens of meters

Long-range radar (77GHz)

- Highly integrated
- More transmit power allows greater distance (up to 250m)

Radar technology complements Machine Vision

- · Radar can detect objects at longer distances but with less detail and limited recognition capability compared to cameras
- · Radar can also be used for redundancy and for added security
- Radar is effective for blind spot detection and emergency braking, efficient also in difficult weather conditions

Automotive Radar Applications

GNSS* Positioning

More Precision Enables More Safety Features

Precise Positioning: Towards Autonomous Driving

Precise Positioning to enable < 30cm precision

- Lane detection
- Positioning data for V2X sharing
- Collision avoidance
- Autonomous parking
- Autonomous driving
- eCall accident location

* GNSS: Global Navigation Satellite System

V2X Communications: ST & Autotalks 30

Vehicle-to-Everything (V2X) Autotalks to start mass deployment in 2019

Key Features

- Autotalks' technology addresses all key V2X challenges: communication, reliability, cybersecurity protection, safety-grade, positioning accuracy and vehicle installation
- The chipsets exceed all requirements specified by the USDOT V2V notice of proposed rulemaking (NPRM)

Key Benefits

- Significantly improves overall road safety
- Improves road mobility
- Effectively coordinates vehicles and selfdriving cars

V2X Communications: ST & Autotalks

- All needed V2X blocks
- Pre-integrated Software
- Smallest footprint

• DSRC (ITS-G5 - WiFi 11.p) V2X

V2X

- CMOS 40 nm
- Production 2019
- ADAS level 4

In-Car Connectivity

32

High-Speed, Long Length, Cost-Effective, EMC resistant

- Future in-vehicle applications like autonomous driving, increase the need for the transmission of high levels of data to and from sensors and car systems
- An example requirement will be transmitting uncompressed video data from cameras to processing ECUs
- Up to 15 meters of automotive cabling distances, including up to 4 inline connectors, have to be covered. The transmission of scalable data rates between 1Gb/s and 12Gb/s has to meet stringent automotive EMC and temperature requirements

Hi-Speed Connectivity: ST & Valens

Valens and ST join forces to revolutionize in-car connectivity.

Unprecedented Bandwidth

 Tunneling of up to 6Gbps of simultaneous streams of high-definition video & audio, data, USB, and power, over a 15m (50ft) single, unshielded twisted pair (UTP) cable.

Designed for Networking

 Multistream & multi-hop capabilities for the whole-car backbone network infrastructure, for optimized sensor fusion, ADAS and infotainment.

EMC - Resistant Solution

• Highly robust, with adaptive mechanism to deal with EMC, cable aging, temperature changes, and more, with no need for cable grounding.

Hi-Speed Connectivity: ST & Valens 34

6Gbps FULL-DUPLEX AT NEAR-ZERO LATENCY

System content

- 6Gbps full-duplex link on UTP cable
- Gigabit Ethernet
- USB 2.0, I2S, I2C protocols

Silicon implementation

- 28nm CMOS bulk
- 20M logic gates
- 13x13 225pin FlipChip BGA
- Max Total power < 7W
- -40°C < Tj < 125°C

Assisted Driving Solutions 35

Active Safety differentiated offer

2017/18

• Mobileve 4th Gen

- •2nd Gen 24 GHz •1st Gen 77 GHz
- Auto Parking MCU
- Surround View Video Processor & Camera (open market)

- 2020
- Mobileye 5th Gen
- •Radar FD-SOI28
- 360° ASIC Vision Processor
- ADAS Power Management

New

Processor

Sensor

10+ Projects engaged in China/Taiwan Lead project already in production.

> Packaged in a small module

Basic Lane Detection

Obstacle

From Assisted to Autonomous Driving \$400 of Additional Silicon Content to Enable Level 4/5 Cars

ST is Making Driving More Connected

and More Secure

- Automotive MCUs with security features
- Extended temp range
- Zero defect strategy
- High performance, safety critical and low power SPC5 families

- Automotive Multi-core MPUs
- Embedded security
- Wide Connectivity
- Best-in-class Perf / Power ratio
- Temperature 105C
- Posix OS support

- V2X Partnership
- Leading V2X technology
- Embedded Security

- ST33 Secure
 Element
- Protection against physical and logical attacks
- Automotive Grade

Conclusions Autonomous Vehicle User Benefits

- Roads will be safer
 - It is estimated that if about 90% of cars on American roads were autonomous, the number of accidents would fall from 6 million a year to 1.3 million
- Roads will be greener
 - Autonomous vehicles not only react better to potential accidents they drive more economically as well
 - Autonomous vehicles will reduce car ownership and hence numbers of vehicles on the road, meaning less fuel, lower emissions, lower pollution and less natural resources needed for their manufacture
- More Free time
 - Commuting in an autonomous vehicles will be "free time" for those previously at the steering wheel
 - Traffic congestion will be reduced, meaning shorter journeys

