

MILD-HYBRID 48 V DC DESIGN 混合動力車用48伏直流電源設計

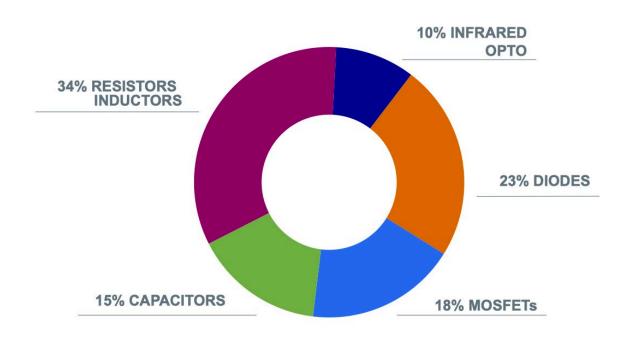
APRIL, TAIPEI 2019

RYAN LIN
BUSINESS DEVELOPMENT ASIA

Market and Technology Leader

Semiconductors

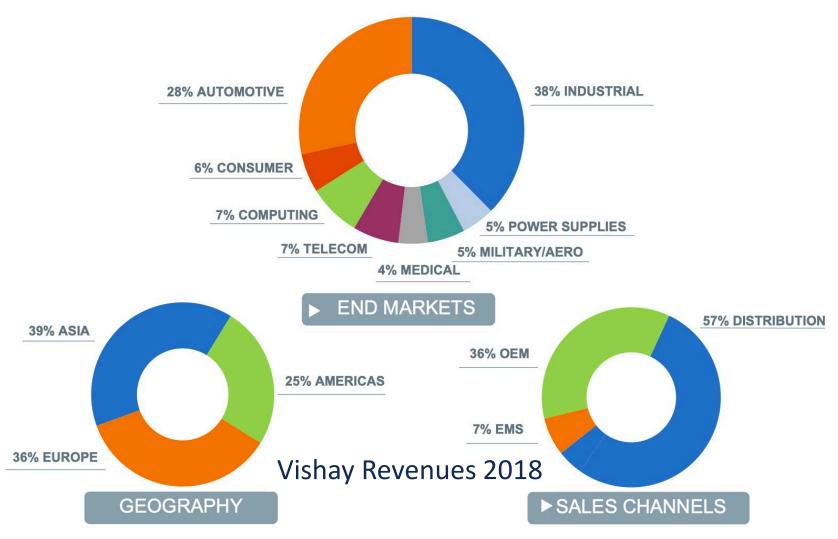
- Low-voltage power MOSFETs
- Power rectifiers
- Infrared components
- TVS avalanche breakdown diodes


Passive Components

- Thin film SMD resistors
- Power inductors and custom magnetics
- Wirewound and other power resistors
- Wet and conformal-coated tantalum capacitors
- Capacitors for power electronics
- · Leaded film resistors

CTD	MTECIC		
	ATEGIC		
ACQ	UISITIONS		
2018	UltraSource	2000	Cera-Mite
2014	Capella Microsystems Holy Stone Polytech		Spectrol
2013	MCB Industrie	1998	Siliconix Telefunken
2012	HiRel Systems	1994	Vitramon
2011	Huntington Electric: Resistor businesses	1993	Roederstein
2008	NEMET: Wet tantalum		Sprague
	capacitor business	1988	Sfernice
2007	International Rectifier:	1987	Draloric
	PCS business	1985	Dale
2002	BCcomponents Beyschlag		
2001	General Semiconductor Infineon: Infrared components business Mallory (NACC) Tansitor		

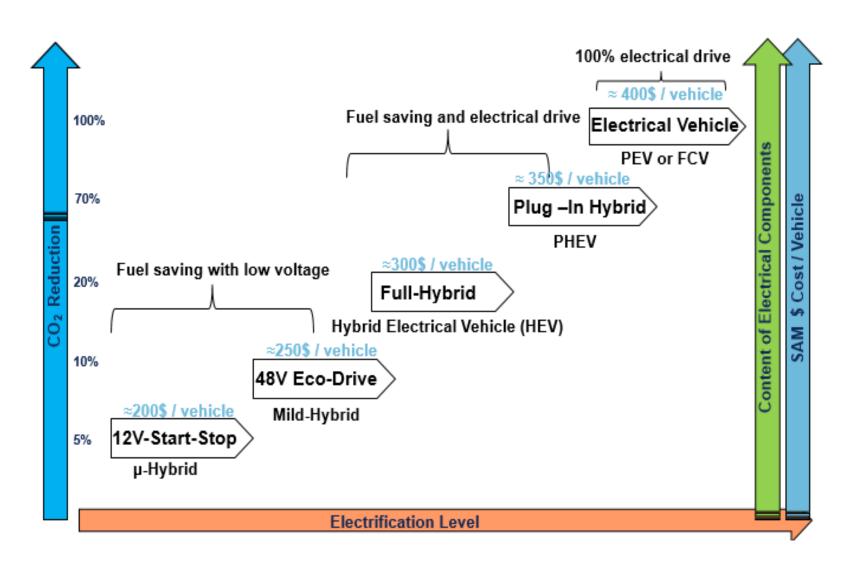
BALANCED PRODUCT PORTFOLIO



49% PASSIVES 51% SEMICONDUCTORS

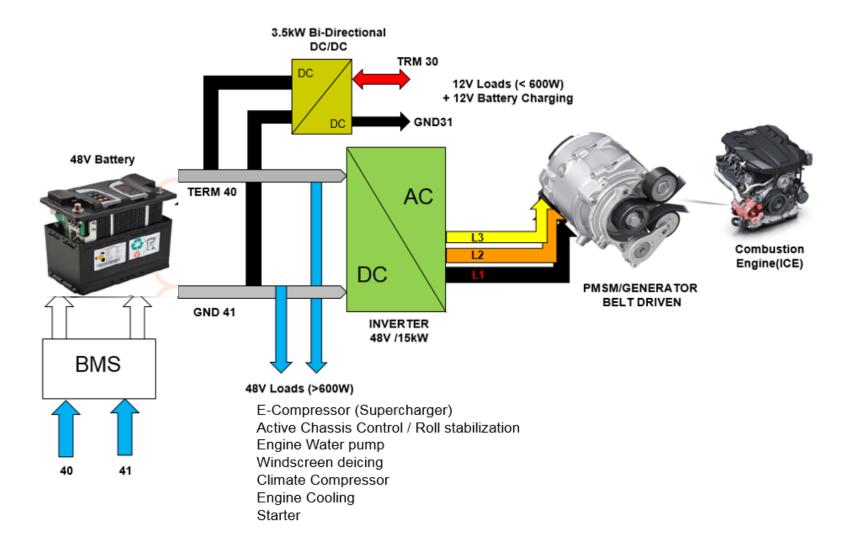
Vishay Revenues 2018

BROAD MARKET PENETRATION

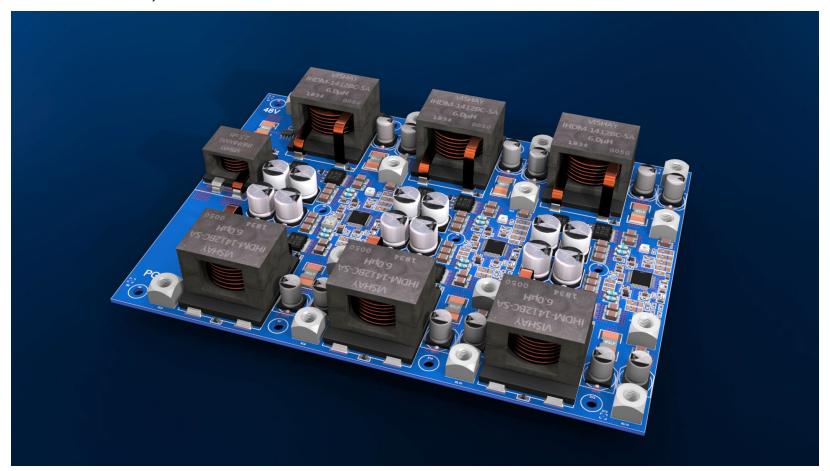


48 V BOARDNET

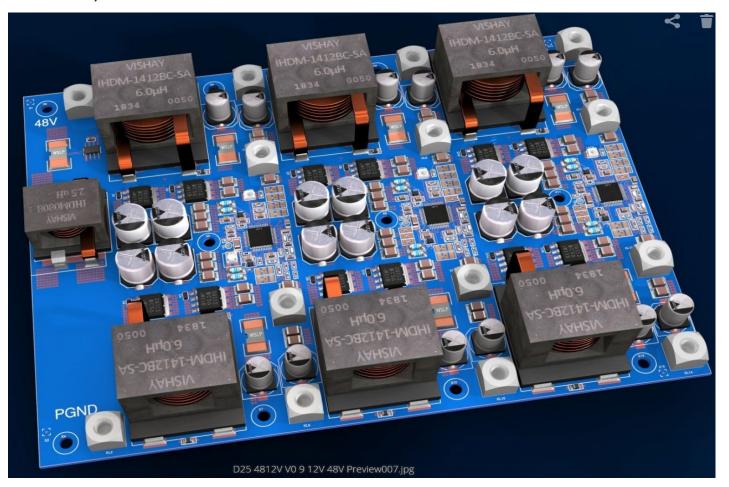
- Key products for Bi-Directional DC/DC Converters 48 V / 12 V up to 3.5 kW and different topologies solutions (Cost and performance targets)
 - MOSFET
 - INDUCTOR
 - RESISTOR
- Electrical Machine Inverters 48 V up to 25 kW with Vishay powerstage solutions
 - CAPACITOR
 - SINTER MODULE
 - MOSFET
 - DIODES
 - NTC



ELECTRIFICATION


48 V DUAL BOARDNET COMPONENTS

48 V / 12 V DC/DC CONVERTER

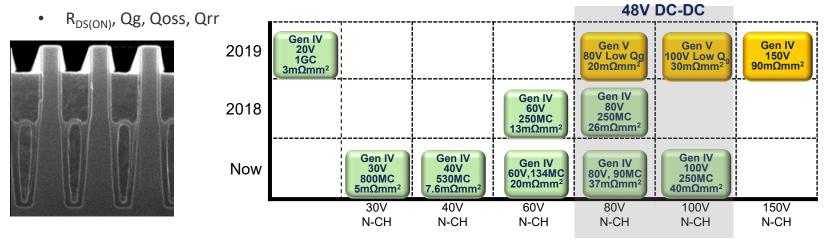

• 6-PHASE, 3.5 KW

48 V / 12 V DC/DC CONVERTER

• 6-PHASE, 3.5 KW

DC/DC 48 V / 12 V CONVERTER KEY COMPONENTS

Part number	Division	Description and bullets
SQJQ112E	MOSFET	•HS Buck Boost Switch 100 V PowerPAK® 8x8L •Optimized for balanced conduction and switching losses in PWM applications •Very low output capacitance for high frequency operation
WSLP3921	Resistors DALE	 Low Side Phase Current Sense Resistor Low Ωic value; down to 0.0005 High Power with small footprint
MAL218397805E3	3 Aluminum Caps	 LC Filter 48V Terminal Low ESR high ripple current High temperature (up to 125°C) Low ESR (down to 20 mΩ)
IHDM1008BC	DALE Magnetic	 Input EMI (PI) Filter Inductor Iron Powder, low DCR. High current handling capability. Low DCR loss and high saturation Output Storage Inductors
IHDM1412BCSA	DALE Magnetic	Extremely Low DCR High current handling capability


48 V BOARDNET

- Key products for Bi-Directional DC/DC Converters 48 V / 12 V up to 3.5 kW and different topologies solutions (Cost and performance targets)
 - MOSFET
 - INDUCTOR
 - RESISTOR
- Electrical Machine Inverters 48 V up to 25 kW with Vishay powerstage solutions
 - CAPACITOR
 - SINTER MODULE
 - MOSFET
 - DIODES
 - NTC

POWER TRENCH MOSFETS

- Automotive Grade Gen 4 Split Gate Platform in production from 30 V 100 V
- Roadmap for continuous optimization and improved efficiency focusses on:

Automotive Bond wireless package technology released.

AUTOMOTIVE MOSFETS PACKAGE EVOLUTION

Increased I_{DMAX} (%)

SOT23, TSOP6 (2.46mm x 2.7mm)

25%

PowerPAK SC70 $(2.05 \text{mm} \times 2.05 \text{mm})$

SO-8

 $(4.9 \text{mm} \times 6 \text{mm})$

100%

PowerPAK 1212W $(3.3 \text{mm} \times 3.3 \text{mm})$

DPAK

(6.5mm x 10mm)

100%

PowerPAK SO8L $(5.13 \text{mm} \times 6.15 \text{mm})$

D2PAK

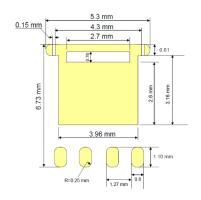
(10mm x 15mm)

50%

PowerPAK 8x8L (8.0x8.1mm)

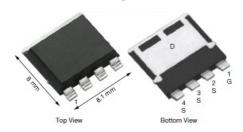
D2PAK 7ld (10mm x 15mm)

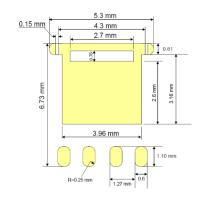
100%

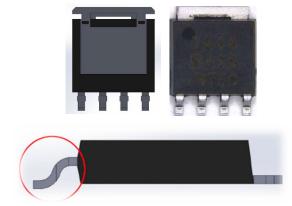

PowerPAK 8x8L BWL PowerPAK 10x12?

POWERPAK® SO-8L PACKAGE PORTFOLIO

Vos (V)	Part Number	Vgs (V)	RDS(ON) 10V		Rds(on) 4	.5V (mΩ)	Q _g (nC	C) Typ.
VD3 (V)	T dit ivaliber	000(0)	Тур.	Max	Тур.	Max	10Vgs	4.5 V Gs
-200	SQJ191EP	±20		210				
-100	SQJ111ELP	±20	20	24	28	34	51	25
-40	SQJ141ELP	±20		4.8		6.9	169	90
-30	SQJ131ELP	±20		2.8		5.1	169	90
30	SQJA26EP	±20	0.55	0.7	0.95	1.15	125	56
40	SQJA36EP	±20	1	1.2	-	-	86	-
60	SQJ160EP	±20	1.7	2	-	-	57	-
80	SQJ180EP	±20	2.5	3	-	-	60	-
100	SQJ110EP	±20	4.3	5.2	-	-	60	-
150	SQJ172EP	±20	32	40	-	-	12	-

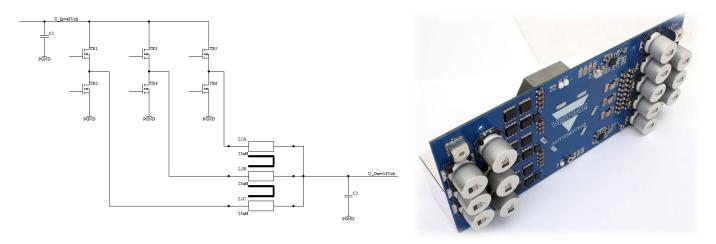




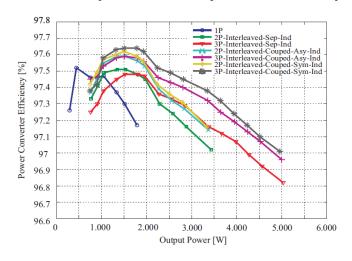

POWERPAK® 8X8L PACKAGE PORTFOLIO

P/N	Configuration	Package	Channel	VDS	VGS	IDMax. (A)	RDS(on)@10V	Qg@10V (nC)
SQJQ904E	Dual	PowerPAK 8 x 8L	N	40	20	100	0.0034	60
SQJQ900E	Dual	PowerPAK 8 x 8L	N	40	20	100	0.0039	85
SQJQ960EL	Dual	PowerPAK 8 x 8L	N	60	20	63	0.009	19
SQJQ980EL	Dual	PowerPAK 8 x 8L	N	80	20	36	0.0135	26
SQJQ910EL	Dual	PowerPAK 8 x 8L	N	100	20	70	0.0086	46
SQJQ100E	Single	PowerPAK 8 x 8L	N	40	20	200	0.0015	125
SQJQ404E	Single	PowerPAK 8 x 8L	N	40	20	200	0.00172	175
SQJQ100EL	Single	PowerPAK 8 x 8L	N	40	20	200	0.0012	140
SQJQ402E	Single	PowerPAK 8 x 8L	N	40	20	200	0.0017	169
SQJQ466E	Single	PowerPAK 8 x 8L	N	60	20	200	0.0019	135
SQJQ480E	Single	PowerPAK 8 x 8L	N	80	20	150	0.003	82
SQJQ410EL	Single	PowerPAK 8 x 8L	N	100	20	135	0.0034	97

Production Version Package Resistance: $^{\circ}0.4~\text{m}\Omega$ Current Rating: 400 A

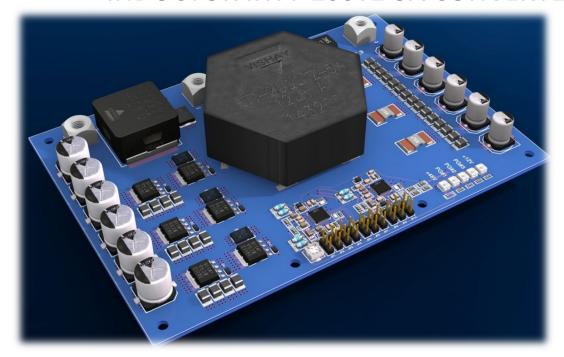


48 V BOARDNET


- Key products for Bi-Directional DC/DC Converters 48 V / 12 V up to 3.5 kW and different topologies solutions (Cost and performance targets)
 - MOSFET
 - INDUCTOR
 - RESISTOR
- Electrical Machine Inverters 48 V up to 25 kW with Vishay powerstage solutions
 - CAPACITOR
 - SINTER MODULE
 - MOSFET
 - DIODES
 - NTC

48 V / 12 V BI-DIRECTIONAL CONVERTER WITH SYMMETRICAL COUPLED INDUCTOR

• When symmetrical coupled inductor is used, each inductor current has better shared phase current compared with asymmetrical coupled inductor.

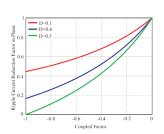


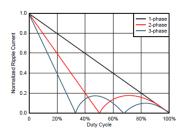
Symmetrical Coupled 3-Phase

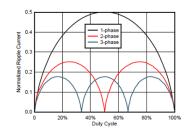
48 V / 12 V DC/DC WITH SYMMETRICAL COUPLED INDUCTOR IHTT-200TZ-5A CONVERTER

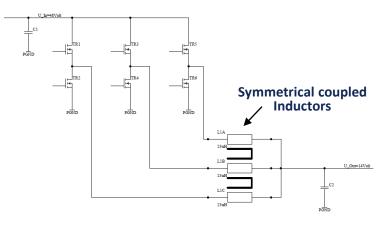
Symmetrical Coupled 3-Phase

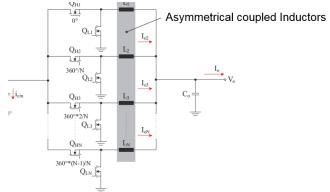
CONCLUSION:


Symmetrical as a well as asymmetrical coupled inductors are known to offer advantages in applications requiring fast response — they allow reducing ripple current while keeping the leakage inductance, which determines transient response, constant. In applications where transient response is not important, low leakage inductance is also advantageous, because it corresponds to low energy storage, and thus smaller less expensive inductors. We have experimentally demonstrated good performance with coupled inductors in an automotive multi-phase dc-dc converter, using symmetrical coupled inductors. Improved performance would be possible with better winding construction and/or custom designed solutions.




48 V / 12 V CONVERTER SOLUTIONS


- Three Phase with 3 single Output Inductors
- Three Phase symmetrical coupled Inductor solutions
- Three-Phase non symmetrical coupled Inductor solution
- Six Phase single Inductor
- Four Phase single Inductor

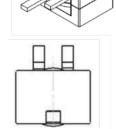

Using coupled inductor the ripple current is smaller than using non coupled inductor, and moreover with increasing coupled factor the ripple current can be reduced with significant degrade scaling.

IHDM INDUCTORS FOR STORAGE AND FILTERING

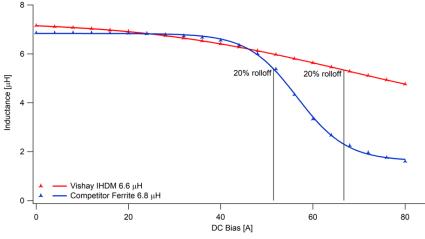
Customized power Inductors for 48 V Filtering and Storage

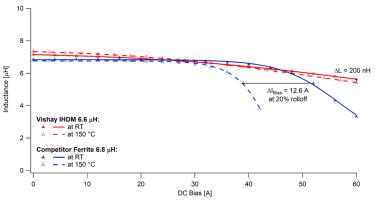
- Voltage Breakdown: 700 V to 1500 V

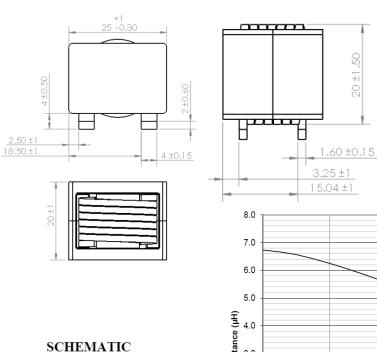
Temperature range: 200 – 220°C
 Terminal: Fla Wire / Customized


Core material: Composite / Iron-Powder

We have different termination options available:





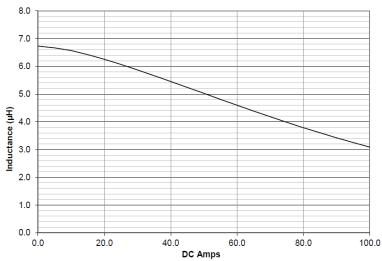


IHDM: Ferrite: Stable inductance over temperature current rating went down by ca. 13 A

48 V / 12 V DC/DC CONVERTER OUTPUT STORAGE INDUCTOR IHDM1008BZEB6R4MVA

3.5 kW Output Storage Inductor 6,4 µH

ELECTRICAL SPECIFICATIONS: Inductance (µH)


 $L_{0A} = 6.4 \mu H \pm 20\%$

Estimated Core Loss: 80kHz

$$\begin{split} I_{rip} &= 20 A_{pk-pk}: 2.2W \ nominal \\ I_{rip} &= 10 A_{pk-pk}: 0.8W \ nominal \end{split}$$

Temperature rise*

 $\Delta T = 40^{\circ} C @ 45ADC$

Saturation Current

 $L = 3.5 \mu H \text{ min.} @ 85A$

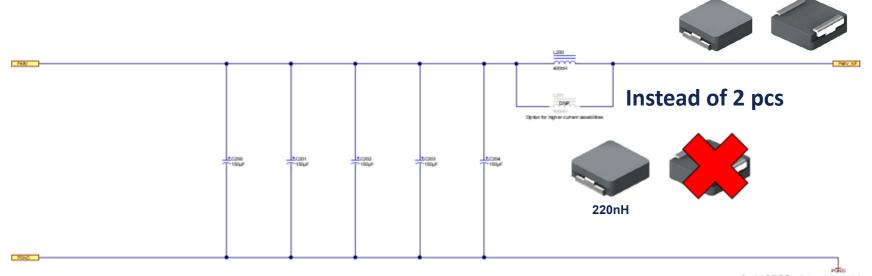
AC Copper Loss

$$\begin{split} I_{rip} &= 20 A_{pk-pk}: 0.4 W \text{ nominal} \\ I_{rip} &= 10 A_{pk-pk}: 0.1 W \text{ nominal} \end{split}$$

Material

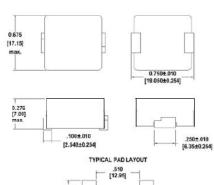
Core: Powdered Iron Alloy Solder: Hot-dipped Sn. Wire: 200°C Polyimide-amide insulation

Resistance


 $R_{DC} = 1 \text{ m}\Omega \text{ nominal}$ $R_{DC} = 1.2 \text{ m}\Omega \text{ max}$

Operating Temperature

- 40°C - 180°C Including Self-Heating

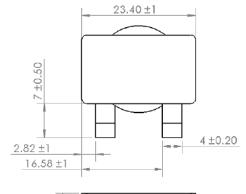


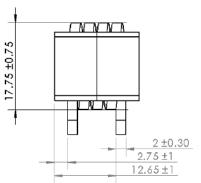
IHSR6767GZ-5A 12 V OUTPUT FILTER HIGH CURRENT @130 A

Copyright © 2017, Texas Instruments Incorporated

	STANDARD ELECTRICAL SPECIFICATIONS											
Lo INDUCTANCE µH ±20% @100KHz, .25V, 0A	DCR mOhms TYPICAL 25°C	DCR mOhms MAX 25°C	HEAT RATING CURRENT DC AMPS3 TYPICAL	SATURATION CURRENT DC AMPS4 TYPICAL	SATURATION CURRENT DC AMPS ₅ TYPICAL							
0.100	0.09	0.09	185	120	180							
0.120	0.13	0.14	175	115	161							
0.150	0.15	0.16	165	112	161							
0.180	0.19	0.20	144	110	159							
0.220	0.24	0.25	132	107	155							

NOTES:


- 1. All test data is referenced to 25°C ambient.
- 2. Operating Temperature Range 55°C to + 155°C
- 3. DC current (A) that will cause an approximate ΔT of 40°C.
- 4. DC current (A) that will cause Lo to drop approximately 20%
- 5. DC current (A) that will cause Lo to drop approximately 30%
- 5. DC current (A) that will cause Lo to drop approximately 50%
- 6. The part temperature (ambient + temp rise) should not exceed 155°C under worst case operating conditions. Circuit design, component placement, PWB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.

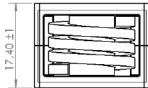


48 V / 12 V DC/DC CONVERTER IHDM INPUT FILTER 48 V IHDM0907AHEB1R7MVA

1.7 µH Differential Mode EMI Filter Inductor

DIMENSIONAL OUTLINE (mm)

ELECTRICAL SPECIFICATIONS: Inductance (µH)


 $L_{0A} = 1.7 \mu H \pm 20\%$

Resistance

 $R_{DC} = 0.40 m\Omega \pm 15\% @25^{\circ}C$

Operating Temperature -40°C to 180°C Including Self-Heating

Saturation Current

L = 1µH Nominal @ 140ADC

<u>Material</u>

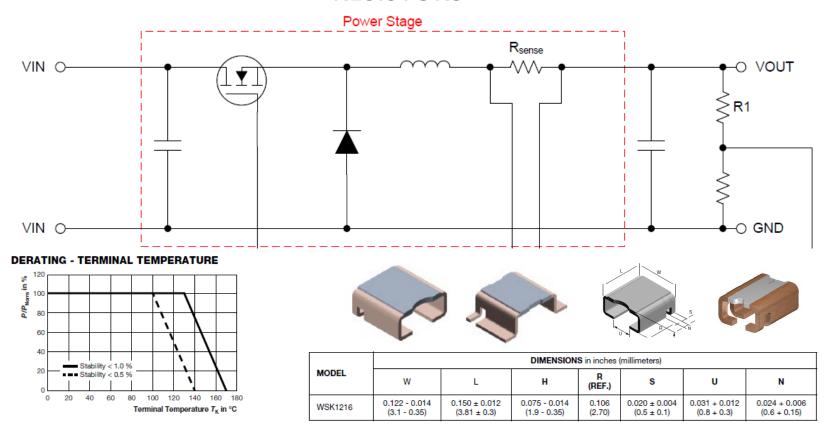
Core: Powdered Iron Alloy Wire: 200°C, PAI Insulated Solder: Hot Dipped Tin

SCHEMATIC ||E

DWV: Core-Coil Isolation 300VDC

Weight 35g Nominal Temp Rise*

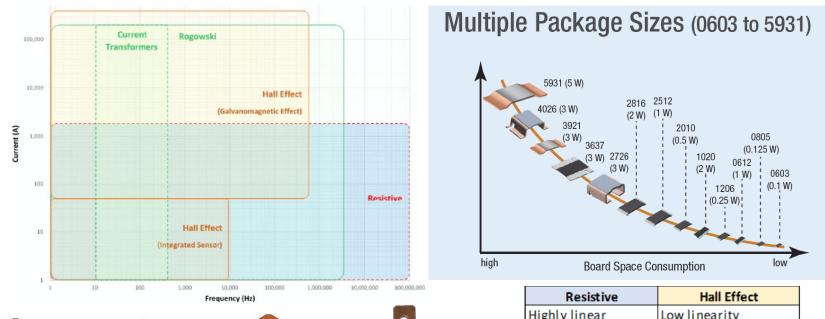
 $\Delta T = 40^{\circ}C$ @ 60ADC

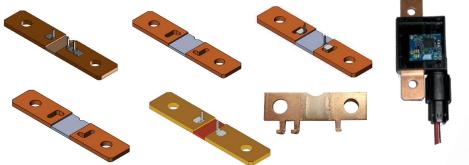


48 V BOARDNET

- Key products for Bi-Directional DC/DC Converters 48 V / 12 V up to 3.5 kW and different topologies solutions (Cost and performance targets)
 - MOSFET
 - INDUCTOR
 - RESISTOR
- Electrical Machine Inverters 48V up to 25kW with Vishay powerstage solutions
 - CAPACITOR
 - SINTER MODULE
 - MOSFET
 - DIODES
 - NTC

48 V DUAL BOARDNET SOLUTIONS CURRENT SENSE RESISTORS




STANDARD ELECTRICAL SPECIFICATIONS										
GLOBAL MODEL	SIZE	POWER RATING P _{70 °C} W	TOLERANCE ± %	RESISTANCE VALUE RANGE (1) Ω	WEIGHT (typical) g/1000 pieces					
WSK1216	1216	3.0	1.0	1m	420					
WSK1216	1216	5.0	1.0	0.5m	420					

MODEL	RESISTANCE VALUE (mΩ)	THERMAL RESISTANCE	ELEMENT MATERIAL
WSK1216	0.5	14.5	MnCuSn
WSK1216	1.0	7.3	MnCu

CURRENT SENSE TECHNOLOGY HIGH POWER, LOW RESISTANCE

WSBS8518 Custom Shunts, high power, 50 $\mu\Omega$ - 500 $\mu\Omega$

Resistive	Hall Effect
Highly linear	Low linearity
Stable over	High variation with
temperature	temperature
No measurement	May have excessive
latency	measurement latency
No saturation	Saturation mode when
	current range is
	exceeded
No additional power	Additional power
supply	supply required
Low cost	Higher cost

SHUNT RESISTOR

WSLP0603

WSLP0805

WSLP1206

WSLP2010

WSLP2512

0.4 WATT 10m Ω to 100m Ω

0.5 WATT 5mΩ to 50mΩ

1 WATT 1mΩ to 50mΩ

2 WATT $1m\Omega$ to $30m\Omega$

3 WATT 0.5m Ω to 10m Ω

WSLF2512

WSLP3921

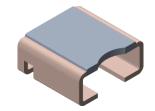
WSLP5931

WSLP2726

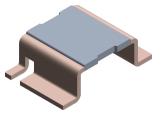
WSLP4026

WSLF2512, 6 W $0.3 \text{m}\Omega$ to $0.5 \text{m}\Omega$

WSLF2512, 4 W $3m\Omega$


WSLP3921, 9 W $0.2 \mathrm{m}\Omega$ to $1 \mathrm{m}\Omega$

WSLP3921, 5 W $2m\Omega$ to $4m\Omega$


WSLP5931, 10 W $0.2\text{m}\Omega$ to $0.5\text{m}\Omega$

WSLP5931, 7 W $1 \text{ m}\Omega$ to $3 \text{ m}\Omega$

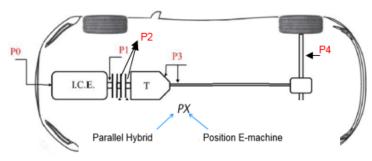
WSLP2726, 7 W 0.3m Ω to 1m Ω

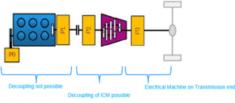
WSLP2726, 5 W 2.0 mΩ to 4 mΩ

WSLP4026, 7 W $0.3 \text{m}\Omega$ to $1 \text{m}\Omega$

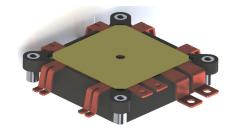
WSLP4026, 5 W $2 \text{ m}\Omega$ to $4 \text{ m}\Omega$

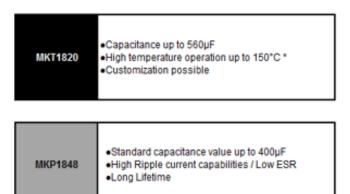
48 V BOARDNET


- Key products for Bi-Directional DC/DC Converters 48 V / 12 V up to 3.5 kW and different topologies solutions (Cost and performance targets)
 - MOSFET
 - INDUCTOR
 - RESISTOR
- Electrical Machine Inverters 48 V up to 25 kW with Vishay powerstage solutions
 - CAPACITOR
 - SINTER MODULE
 - MOSFET
 - DIODES
 - NTC



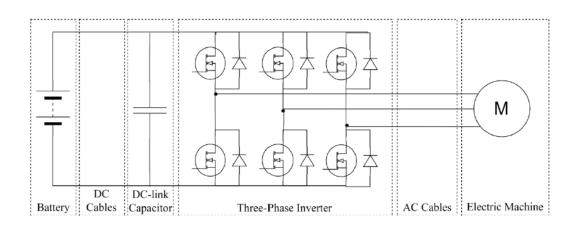
48 V INVERTER SOLUTIONS

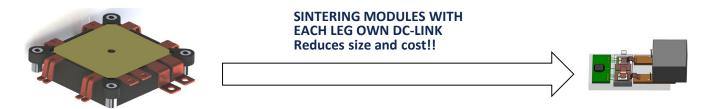

P0:	The e-motor is installed in the belt drive system of combustion engine (ICS)	P0:	Max. cont. power 3.5 kW (peak 14 kW) Discrete solution possible, Sintering better
P1: the	The e-motor is fixed to the crankshaft of combustion engine	P1:	Max. cont. power is 5-8 kW (peak 18 kW): Sintering Module
P2:	The e-motor is installed between combustion engine and transmission	P2:	Max. cont. power is up to 13kW (peak 21 kW): Sintering Module
P3:	The e-motor is located between transmission and differential	P3: kW)	Max. cont. power up to 15-18kW (peak 25
P4:	The E-Motor torque directly on axle drive		Sintering Module
r -	The E-Wotor torque unectry on axie unive	P4:	Max. power for LSEV 25 kW Sintering Module


CUSTOMIZED MKT DC-LINK FILM CAPACITORS

48 V Applications Highlights

- AEC-Q200 Rev D approved –Automotive Grade
- High Temperature Capabilities: especially designed for 48V Board Net high temperature operations, 125°C continuously and up to 150°C for a limited time
- Capacitance range: up to 1000 μF
- Low inductance, low ESR
- High continuous ripple currents
- Self healing properties during operation
- Bus bar connections in line with customer needs




,	DC/DC	DC-LINK	MKT1820	
d Net	Converter	DC-LINK	MKP1848	
/ Board	eBooster	DC-FILTER	MKT1920	
48V	Starter Generator	DC-LINK	MKT1820	

DC-LINK CAPACITOR FOR 48 V INVERTER P0-P4 INVERTERS

Attached to the DC-side of the inverter is a DC-link Capacitor whose main functions include filtering of the DC-side voltage and attenuation of the ripple currents that are drawn from the DC-link by the inverter. DC-link capacitors does not only fill a very important role in the operation of a typical MHEV & EV driveline but are most often bulky and heavy and can contribute to a significant portion of the total inverter volume and weight. Minimizing the parasitic elements such as the stray inductances inside the inverter and the DC-link capacitor is another way to try and decrease the resulting switching transients. Studies have also shown that the values of the parasitic elements, e.g. capacitor and cable series resistance and inductance can greatly impact both current and voltage ripple

CUSTOMIZED DC-LINK FILM CAPACITORS

Basic properties customized designs

- Nominal voltage: 63 V series
- Design is based on 1,4µm metallized polyester, special profile for high temperature and low ESR
- Standard bus bar connection

Voltage:

- 48 V up to 105 °C < 15,000h
 48 V up to 125 °C < 6,000h
 48 V up to 140 °C < 150h

					typical values				
	Capacitance	Film	Volume	μF/cm³	ESL	ESR	I _{rms} *	hot spot	Pd
					(nH)				
	μF	μm	cm³		nH	mΩ	A _{rms}	° C	W
PET	330	1,4	68	4,8	10	1,5	70	125	7,4
	470	1,4	104	4,5	10	1,0	85	125	7,2
	1000	1,4	225	4,4	10	0,6	110	125	7,3

if PP	1000	2,4	972	1,0	5	0,40	300	105	36,0
if PP	1000	1,9	700	1,4	5	0,55	250	105	34,4

^{*} with cooling

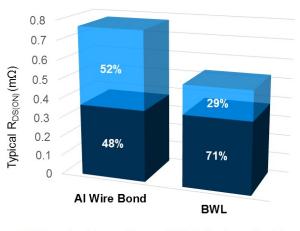


POWER TRENCH MOSFETS FOR 48 V STARTER GENERATOR KGD 100 V

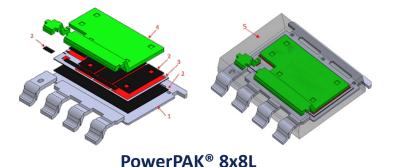
Known Good Die (KGD)

- Range of die sizes: 1 mm x 1 mm to 8 mm x 12 mm
- 100 V Gen 4 MOSFET process can provide $R_{DS(on)}$ down to 0.5 m Ω typ @ 10 V
- Typical die thickness: 200 um
- Common Back Metal: TiNiAg 0.14 u/0.4 u/0.3 u Custom recipes can be defined
- Common Top Metal: AlCu 5u 2.8u to 6u in production
- Plating for Bond Wireless NiPdAu
- Cu Pad Plating through third party (Commercial release) 20 u Cu + 20u solder cap

Wafer Test & Galaxy PAT **Testing & In Line Visual Olympus 3D Probe KGD Test Site Technology** Inspection Inspection Map 10 high precision sockets with Wafers are PAT tested at Testing stations up to 5 sites. Real-time Probe mark (depth and elevated Temperature (85deg) built-in die re-centering Multiple vision inspection to size) inspection tool to control Dynamic PAT (6 sigma) and SYA Full-Kelvin testing for accurate ensure detection of any the probe mark (3 sigma) testing Rds(on) down to sub-m Ω mechanical defects



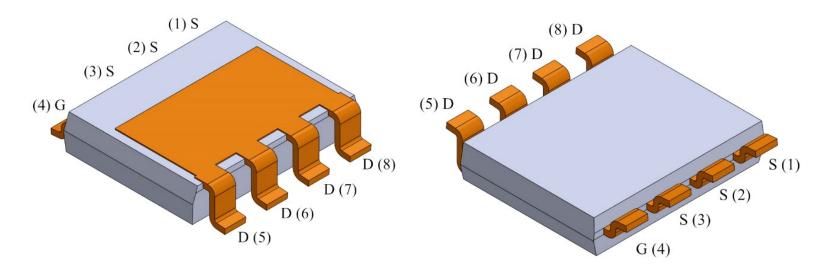
48 V CONVERTER AND INVERTER MOSFETS BOND-WIRELESS (COPPER CLIP)


PowerPAK® SO-8L

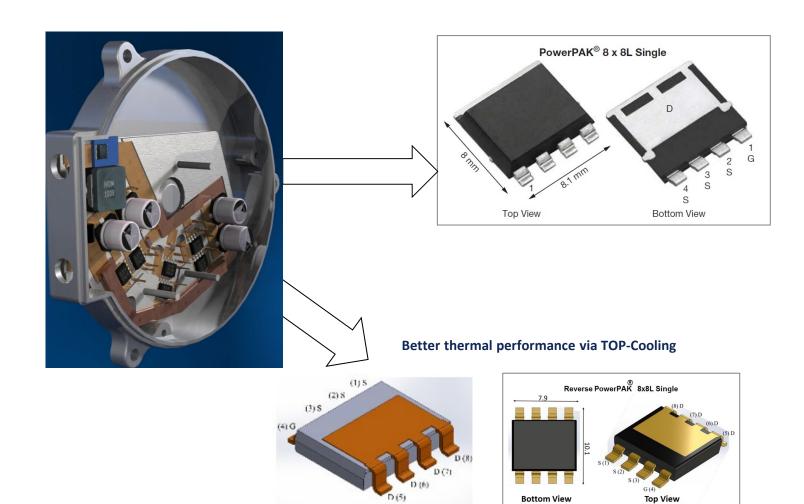
- Cuts Resistance by 50%
- Lower Inductance
- SQJA44EP with 2.1 m Ω (40 V)
- SQJA36EP with 1.2 m Ω (40 V)

Resistive Elements for 40V

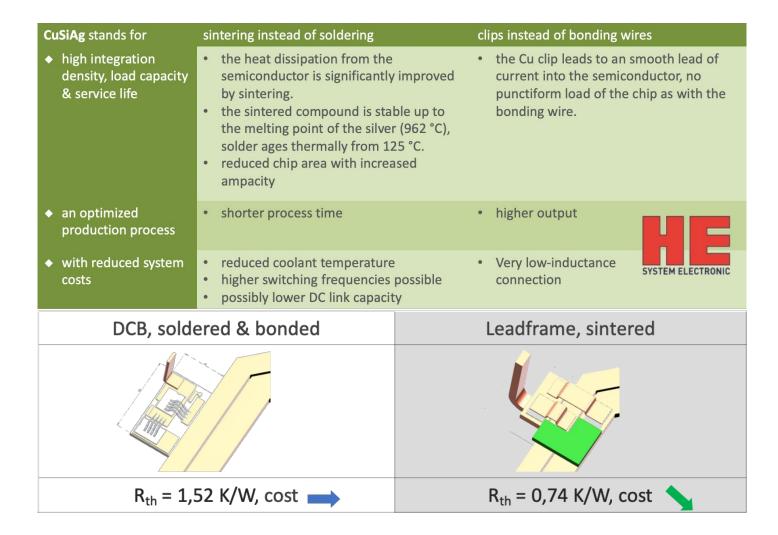
■ Silicon Resistance (Vgs = 10V) ■ Package Resistance



- Reduce Package-Resistance contribution from 52% to 29%
- Lower Inductance
- SQJQ144EL with 0.63 mΩ (40 V)

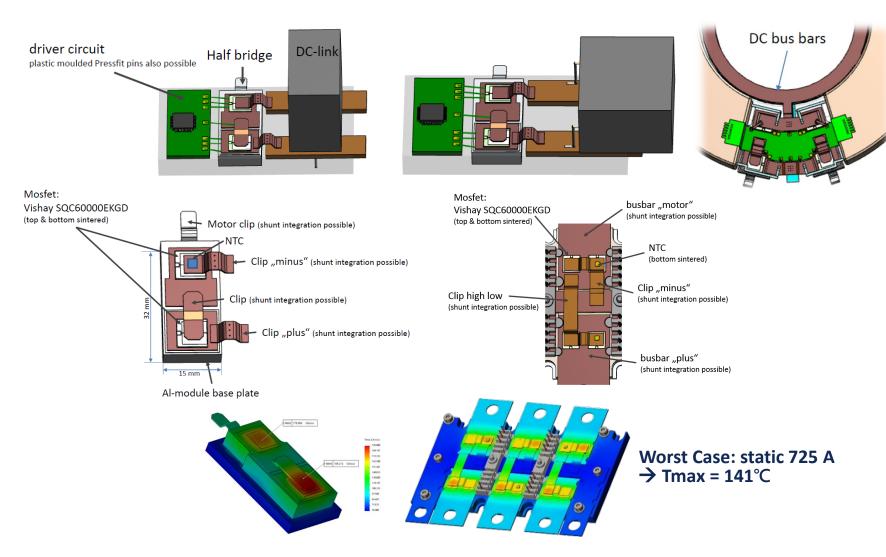

48 V INVERTER MOSFET PowerPAK® 8X8L REVERSE LEAD CONCEPT

- For systems where the heat path through the PCB is not effective we are introducing a PowerPAK® 8x8L derivative optimized for Top Side Cooling
- Development Vehicle is the SQJQ184ER 80V, 1.5mΩ max
- Any device in the conventional package roadmap, (slide 29), can be supported in this reverse package
- Solderable Gull-Wing leads offer highest degree of stress relief for harsh environmental conditions
- Nickel top surface



BLDC MOTOR DRIVE WITH POWERPAK 8X8L FOR HIGHER POWER WITH TOP-COOLING

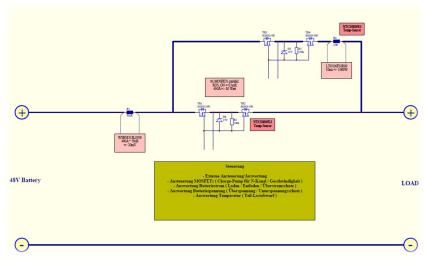
MILD HYBRID (BSG / ISG) SINTER MODULES UP TO 25 KW



48 V BOARDNET

- Key products for Bi-Directional DC/DC Converters 48 V / 12 V up to 3.5 kW and different topologies solutions (Cost and performance targets)
 - MOSFET
 - INDUCTOR
 - RESISTOR
- Electrical Machine Inverters 48 V up to 25 kW with Vishay powerstage solutions
 - CAPACITOR
 - SINTER MODULE
 - MOSFET
 - DIODES
 - NTC


48 V INVERTER SINTERING MODULES UP TO 25 KW



SINTER MODULE SOLUTIONS

48 V Battery Safety Switch with Pre-Charging

Vishay Design

800A@ 9x MOS 550A@ 6x MOS 400A@ 4x MOS