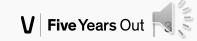
Bi-directional Power Converter

解鎖6.6kW SiC 雙向充電器設計

Karina Yu karina.yu@arrowasia.com +86 139 2522 6037 Tony Tan <u>Tony.tan@arrowasia.com</u> +86 186 2036 3186

Ver 2.3 Oct 12, 2022

V Five Years Out


Content

- 1. 6.6kW Bidirectional Power Converter Introduction
- 2. 6.6kW Bidirectional Power Converter Block Diagram
- 3. Totem-Pole PFC Bidirectional Power Converter
- 4. CLLLC Full Bridge Bidirectional Power Converter
- 5. Silicon Carbide (SiC) MOSFET and Gate Driving
- 6. Test Results
- 7. BOM
- 8. Extension to Energy Storage Solution (In Development)
- 9. 15kW Bidirectional PFC (Released)
- 10. Digital Power Control

Arrow – ST Joint Lab

Power & Energy Lab

Bidirectional Charger (250-

For details, please visit Arrow Open Lab website

IO-link Master

Qty

Motor Control Lab

(**)

STEVAL-CTM010V1

Released

Released

Air-conditioning Compressor

P/N: 2019M002 Customization

Eunc.	HVAC – 2kW	Qty
IPM	STGIB15CH60TS-L	1
мси	STM32F302RBT6	1
PFC MOS	STP4LN80K5	2
PFC Gate DRV	PM8834	1
PFC Diode	STTH30AC06C	2
TRIAC	T435-800B	1
Valve Stepper Motor CTRL	ST5PIN820	1

110 krpm BLDC Motor Driver P/N: 2021M001

Func.	Fast Hair Dryer	Qty
MCU +GATE DRV	STSPIN32F0601Q	1
MOS	STN6N60M2	6
AUX	VIPER222	1
LDO	LD1117533TR	1
AUX Diode	BAT41ZFILM	1
AUX Pri. Diode	STTH1L06A	2
TRIAC	T1635T-8FP	1

I/NI BOBBNOOL					
Servo	Qty				
STSPIN32G4	1				
STL110N10F7	6				
VIPER319HDTR	1				
STP51H100A	3				
ST1S40IDR	2				
1D1117512TR	1				
ETP01-1621RL	4				
ETP01-1621RL	2				
	Servo STSPIN32G4 STL110N10F7 VIPER319HDTR STPS1H100A ST1540IDR LD1117S12TR ETP01-1621RL				

	MCU +GATE DRV	STSPIN32F0601Q	1
	MOS	STN6N60M2	6
ET I	AUX	VIPER222	1
	LDO	LD1117533TR	1
	AUX Diode	BAT41ZFILM	1
ने	AUX Pri. Diode	STTH1L06A	2
	TRIAC	T1635T-8FP	1

 \bigcirc

SERVO	
	Newly released Q3'22

Automation Lab

IO-link Slave -

DI Module

SM15T33CA

SMA4F5.0A

L7986ATR

L6364Q

STPS140Z

STM32G071RBT6

STISO621WTR

SPT01-335DEE

LD39050PU33R

STPS3L60UFN

P/N: 2021W003

Qty

Qty

STPS340AFN

O Module

STPS3L60UFN

TPS340AFN

M15T33CA

MA4F5.0A

PT01-335DEE

D39050PU33R

TM32G071RBT6

Fower light

STM32G071

SMB15F24A

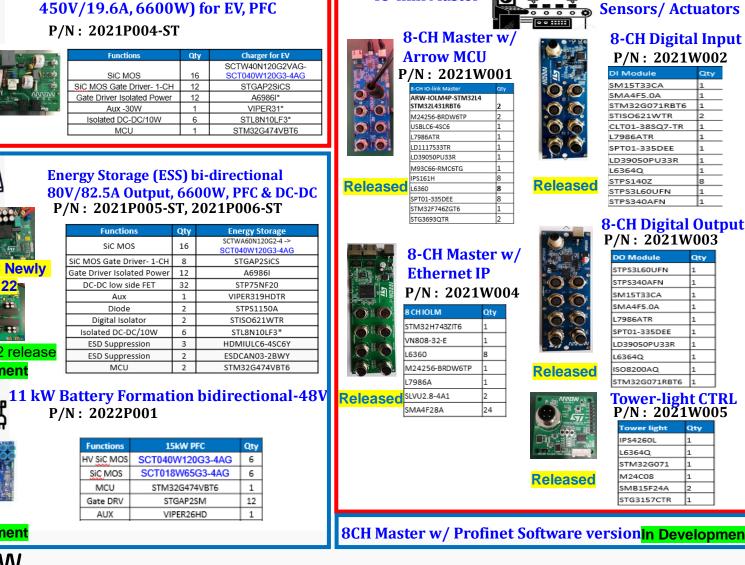
STG3157CTR

IPS4260L

L6364Q

M24C08

.7986ATR


L6364Q

SO8200AQ

CLT01-38SQ7-TR

8-CH Digital Input

P/N: 2021W002

Released

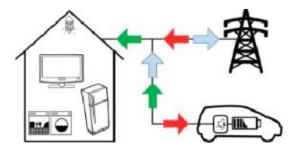
........

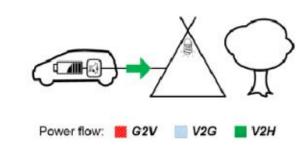
Off-grid PFC Newly

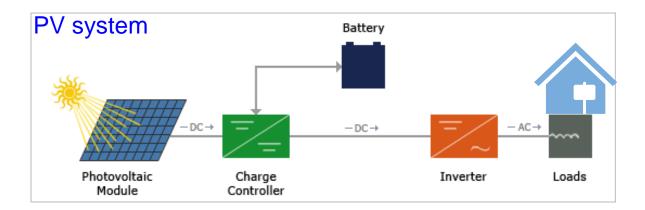
released Q3'22

WITTINE Durit

In Development

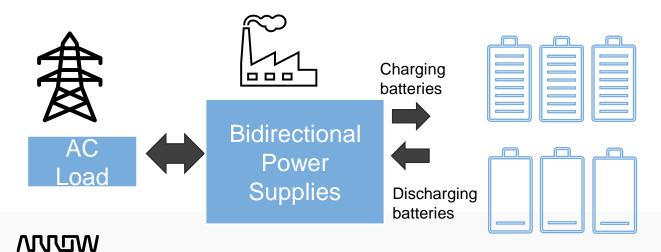

In Development

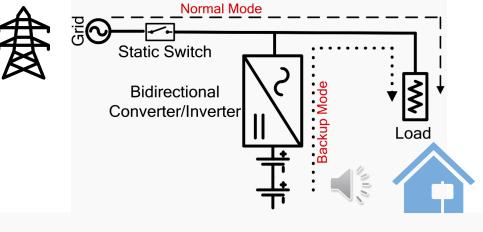

DC-DC Q4'22 release

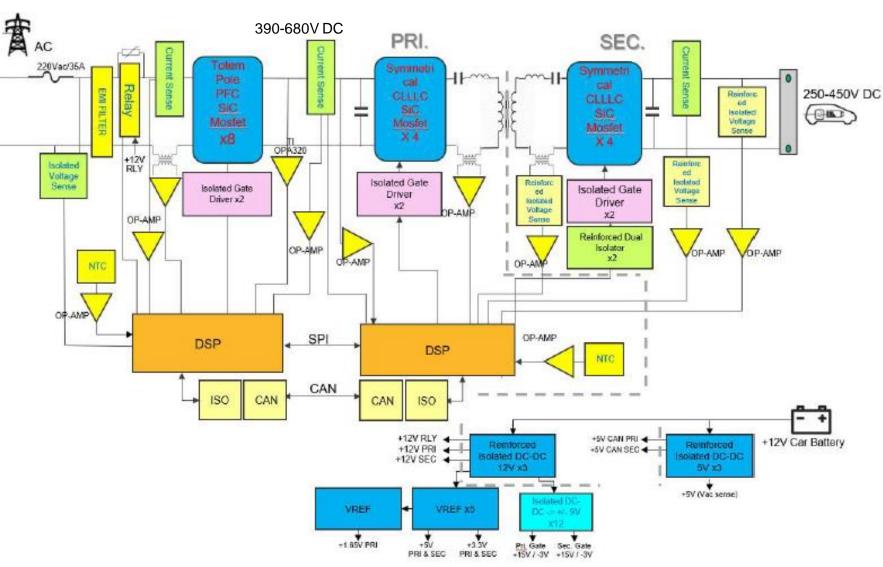

6.6kW Bidirectional Power Converter Introduction

Application examples:

EV system






Equipment- e.g. Battery formation, Aging Test Loading

Energy storage system/ Emergency Power Supplies

Block Diagram - Bidirectional charger for EV- 250-450V, 19.6A/ 6600W

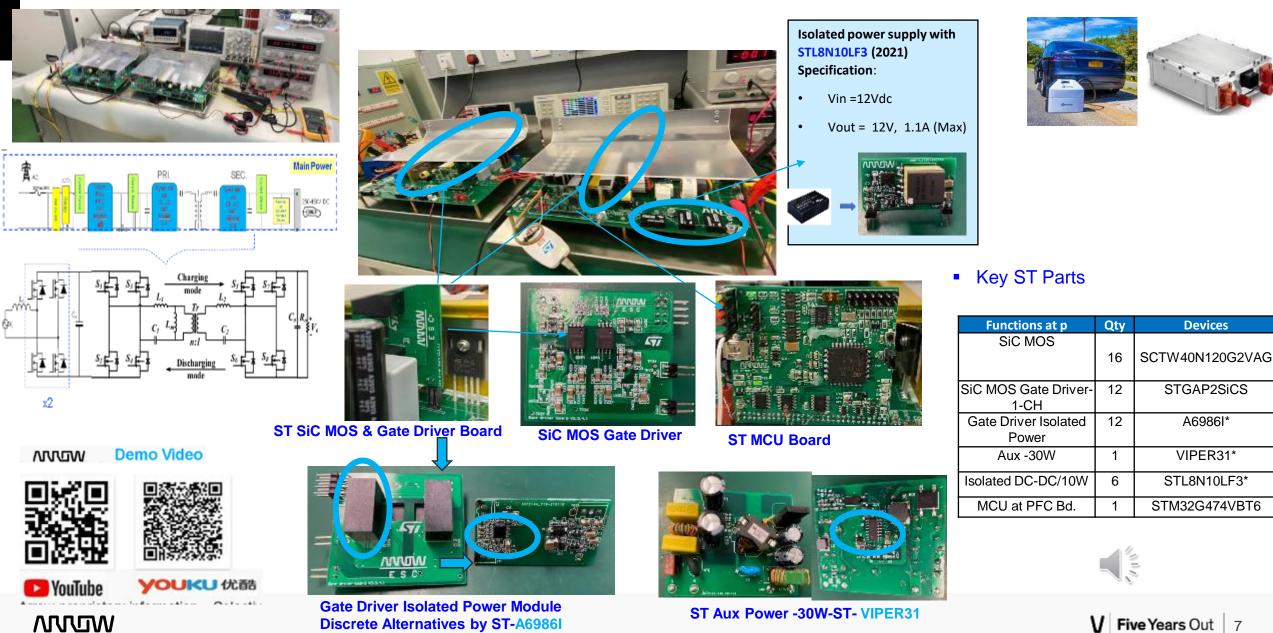
AC-DC board DC-DC board

Specification:

- AC/DC Bidirectional Power Conversion
- Max Charging Power: 6.6kW
- AC Input Voltage: 200-265 VAC
- DC Output Power: 250-450VDC
- Max Inversion Power: 3.3kW
- Inversion Rated Input:336Vdc
- Inversion rated Output: 220Vac 50Hz
- Efficiency >95%
- Totem Pole PFC 67kHz
- CLLLC 200kHz

Applications:

- Onboard charger for EV
- Bidirectional AC-DC equipment
- Energy Storage


SUN,

MOM

Arrow proprietary information - Selective Disclosure only

1) Power Conversion – Bidirectional charger - 250-450V, 19.6A/ 6600W

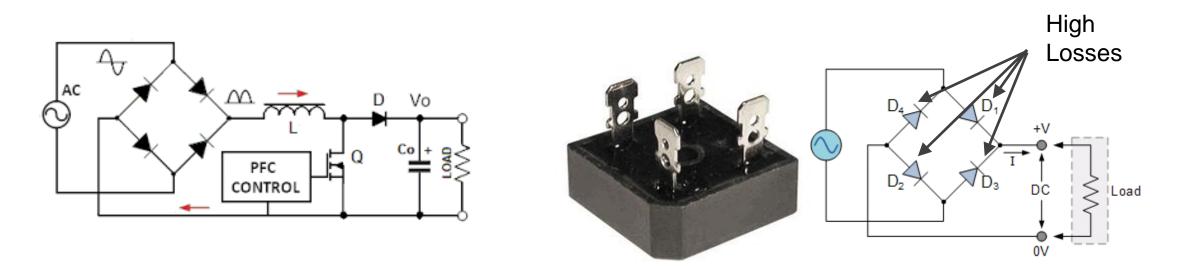
Arrow proprietary information – Selective Disclosure only

6.6kW Bidirectional Power Converter Block Diagram

Challenges

- Noise at SiC MOSFET gate driving
- 2. PFC current spike issue at zerocrossing
- 3. Vac drop (Under-voltage control)
- 4. CLLLC secondary synchronous rectifier control

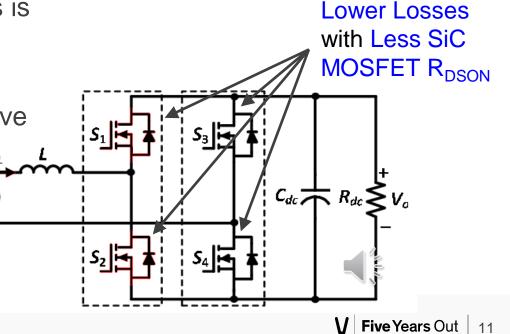
V Five Years Out 8



Why Totem Pole PFC?

Disadvantages of Traditional PFC :

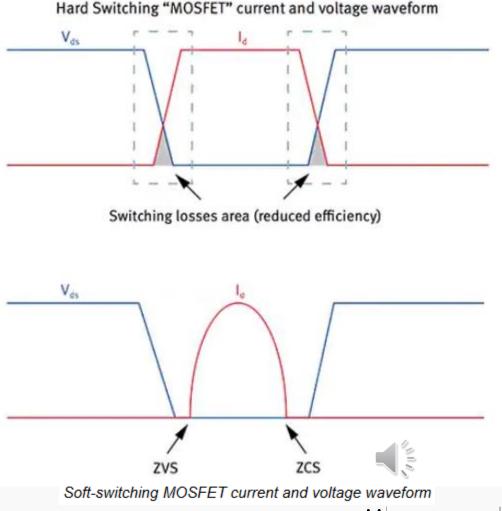
- Larger sized passive components are used
- Higher conduction losses at bridge rectifiers and passive components



Totem-Pole PFC Bidirectional Power Converter

V in 🕻

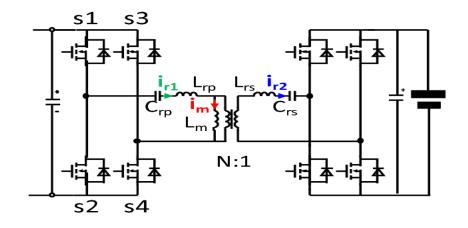
- Totem-Pole PFC is always called Bridgeless Totem-Pole PFC or Bridgeless PFC
- Advantage:
 - ✓ Capability of bidirectional power transfer
 - ✓ MOSFET substituted the bridge rectifier, R_{DSON} losses is lower than the bridge rectifier forward voltage drop
 - ✓ SiC MOSFET used, lower power loss
 - ✓ Higher frequency, smaller ripple, smaller size of passive components can be used I_L
 - ✓ Higher power density



CLLLC Full Bridge Bidirectional Power Converter

Why CLLLC?

- Soft-switching by Zero Voltage Switching (ZVS) and Zero Current Switching (ZCS)
- Without ZVS and ZCS, the large switching losses when current and voltage are overlapped at switching
- With ZVS and ZCS, no current and voltage overlapping at switching

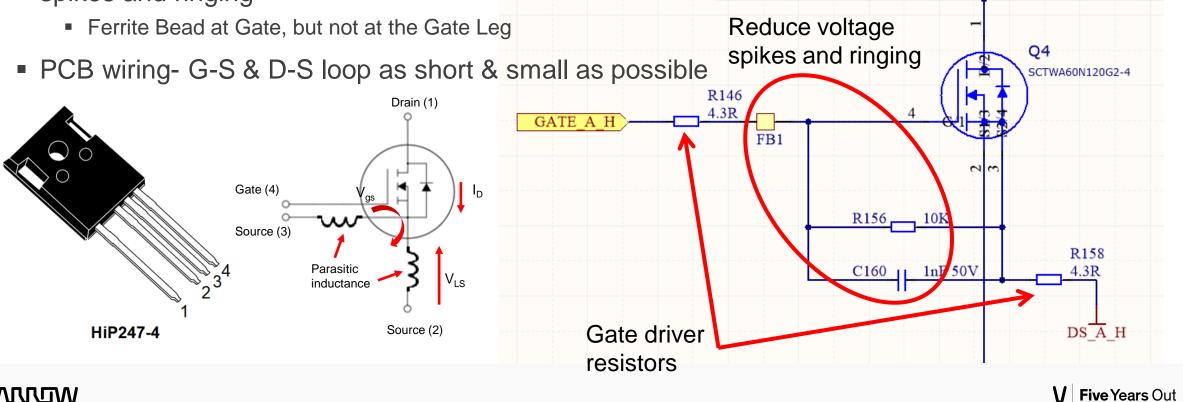


CLLLC Full Bridge Bidirectional Power Converter

- CLLLC is a Resonant, Soft-switching Power converter topology
- Advantages:
 - ✓ Capability of bidirectional power transfer
 - ✓ ZVS / ZCS soft switching technologies to achieve lower power loss
 - ✓ Higher switching frequency, smaller ripple
 - ✓ SiC MOSFET used, lower Rdson, lower power loss
 - \checkmark Smaller size passive components can be used
 - ✓ Higher power density
 - ✓ Symmetrical, easier to control

• CLLLC vs LLC

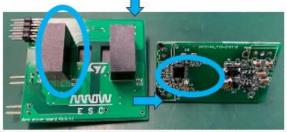
- LLC has less components, but more complex in control for Gain/Qpoint control, especially in reverse direction (inverter mode)
 - LLC in reverse direction (inverter mode) at primary, not ZVS, it's hardswitching, as there is no resonant tank



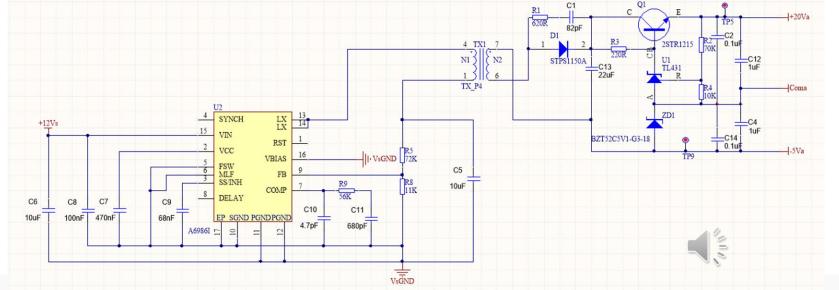
Design challenge: Noise at SiC MOS Gate Driving

- SiC MOSFET: SCTWA60N120G2-4 (1200V; 35mΩ typ.; 60A; HiP247-4;)
 - **Two** separate Source to separate Gate-Source (G-S) Control Loop and (Drain-Source) Power Loop
- Optimized Gate driver circuit for SiC MOSFET to prevent gate oscillation and reduce voltage spikes and ringing

SiC MOSFET & Gate Driver

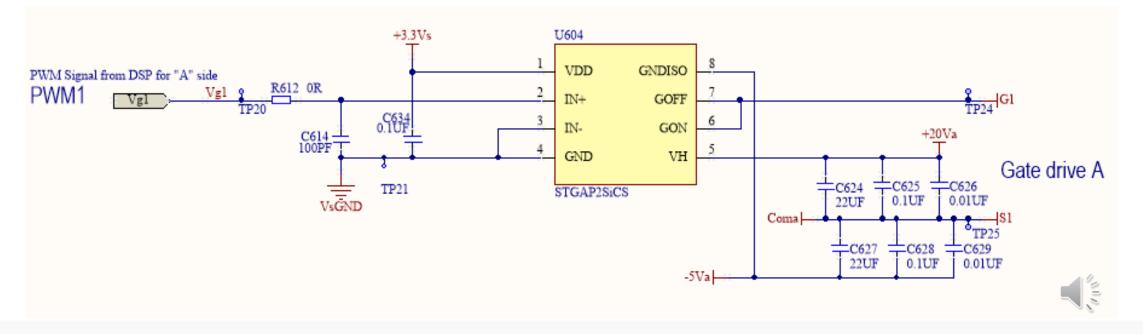

SiC MOSFET needs positive & negative voltage driving supply e.g. +20/ -5V

ST SiC MOS & Gate Driver Board


SiC MOS Gate Driver

Gate Driver Isolated Power Module **Discrete Alternatives by ST-A6986I**

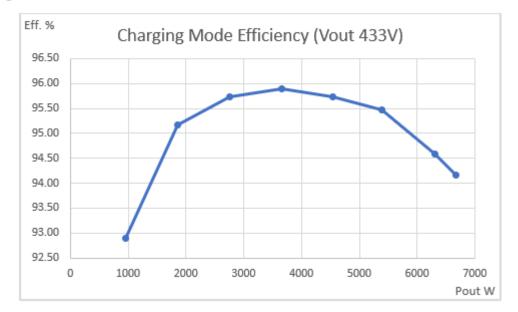
Discrete design- ST A6986I

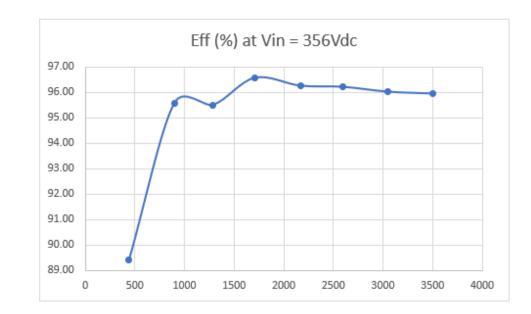

- ✓ Simple circuit; Size optimized; Fully isolated
- ✓ No special feedback circuit is needed
- ✓ +12Vdc input voltage; +20Vdc / -5Vdc output voltage
- ✓ Max. output power 2.5W
- ✓ Discrete solution is more cost effective

SiC MOSFET & Gate Driver

Gate driver – ST STGAP2SiCS

- 4 A driving capability
- Miller CLAMP function prevents gate driver spikes during fast switching operation
- Integrated protection: UVLO & Thermal shut down
- Input to output propagation delay less than 75 ns

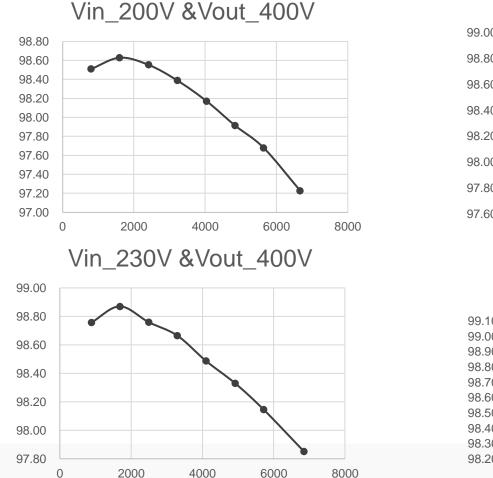


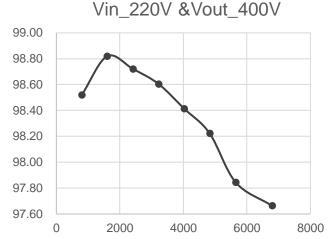


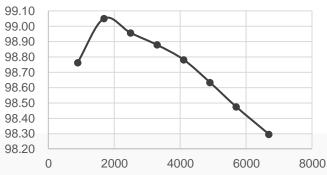
Bidirectional Charger for EV- 250-450V, 19.6A/ 6600W Test Results

Charging Mode:

Inversion Mode:


Vin (V)	230	230	229	229	229	229	228	228
Pin (W)	1028	1950	2885	3818	4741	5646	6675	7076
Vout (V)	433	432	431	430	429	427	426	425
Pout (W)	955	1856	2762	3661	4539	5390	6314	6663
PF	0.986	0.995	0.996	0.997	0.998	0.998	0.998	0.998
Eff (%)	92.9	95.18	95.74	95.89	95.74	95.47	94.59	94.16


Vin (V)	355.92	355.85	355.72	355.72	355.69	355.49	355.47	355.28
Pin (W)	493.86	938.19	1347.30	1767.10	2251.30	2697.00	3175.00	3643.60
Vout (Vac)	222.85	218.30	217.85	217.00	216.81	216.95	216.61	215.97
Pout (W)	441.58	896.74	1286.90	1706.70	2167.30	2595.20	3049.00	3496.40
PF	0.9565	0.9896	0.9948	0.997	0.9981	0.9983	0.9988	0.9989
Eff (%)	89.41	95.58	95.51	96.58	96.27	96.22	96.03	95.96
	Pin (W) Vout (Vac) Pout (W) PF	Pin (W) 493.86 Vout (Vac) 222.85 Pout (W) 441.58 PF 0.9565	Pin (W) 493.86 938.19 Vout (Vac) 222.85 218.30 Pout (W) 441.58 896.74 PF 0.9565 0.9896	Pin (W) 493.86 938.19 1347.30 Vout (Vac) 222.85 218.30 217.85 Pout (W) 441.58 896.74 1286.90 PF 0.9565 0.9896 0.9948	Pin (W) 493.86 938.19 1347.30 1767.10 Vout (Vac) 222.85 218.30 217.85 217.00 Pout (W) 441.58 896.74 1286.90 1706.70 PF 0.9565 0.9896 0.9948 0.997	Pin (W) 493.86 938.19 1347.30 1767.10 2251.30 Vout (Vac) 222.85 218.30 217.85 217.00 216.81 Pout (W) 441.58 896.74 1286.90 1706.70 2167.30 PF 0.9565 0.9896 0.9948 0.997 0.9981	Pin (W) 493.86 938.19 1347.30 1767.10 2251.30 2697.00 Vout (Vac) 222.85 218.30 217.85 217.00 216.81 216.95 Pout (W) 441.58 896.74 1286.90 1706.70 2167.30 2595.20 PF 0.9565 0.9896 0.9948 0.997 0.9981 0.9983	Pin (W) 493.86 938.19 1347.30 1767.10 2251.30 2697.00 3175.00 Vout (Vac) 222.85 218.30 217.85 217.00 216.81 216.95 216.61 Pout (W) 441.58 896.74 1286.90 1706.70 2167.30 2595.20 3049.00 PF 0.9565 0.9896 0.9948 0.997 0.9981 0.9983 0.9988


Bidirectional Charger for EV- 6600W (PFC board only) Test Results

Efficiency of PFC at Vin= 200/220/230/260Vac and Vout = 400Vdc

Vin_260V &Vout_400V

Bidirectional Charger for EV- 6600W (PFC board only) Test Results

Efficiency of PFC at Vin= 200/220/230/260Vac and Vout = 680Vdc Vin 200V&Vout 680V Vin 220V&Vout 680V 98.00 98.20 97.80 98.00 97.60 97.80 97.40 97.20 97.60 97.00 97.40 96.80 96.60 97.20 96.40 97.00 96.20 0 2000 4000 6000 8000 96.00 0 2000 4000 6000 8000 Vin230&Vout 680V Vin260V&Vout680V 98.30 98.20 98.00 98.20 97.80 98.10 97.60 98.00 97.40 97.90 97.20 97.80 97.00 97.70

0

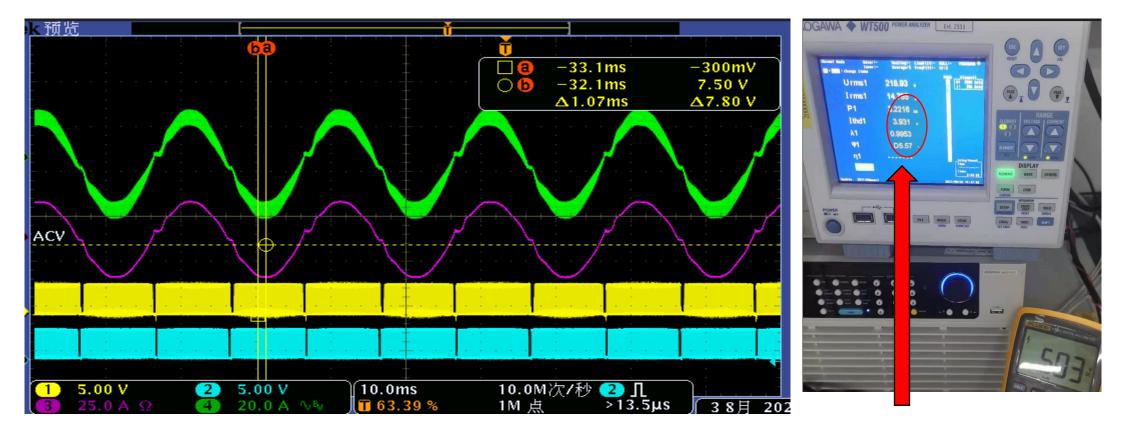
2000

4000

6000

8000

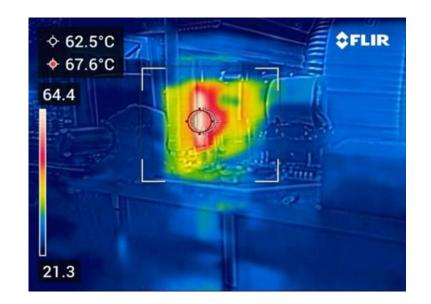
0

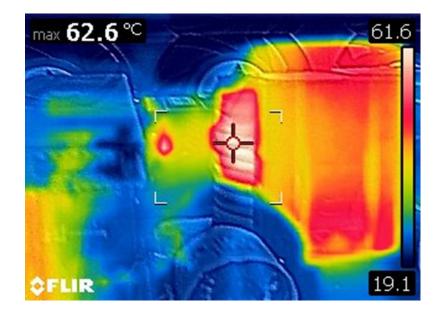

2000

4000

6000

AC Current (Pink), Inductor Current (Green), Switching PWM (Yellow&Blue)


Test condition		* THDi 3.931 %
Vin	220Vac	INDI 3.931 %
Vout	430Vdc	* PF >0.99
P out	6600W	


V Five Years Out

Thermal

Test conditionVin220VacVout430VdcP out6600W

Ambient Temp.: 25°C Delta PFB0812DHE Fan x3pcs – (at least 132 CFM requested)

SiC Mosfet

CLLLC Transformer

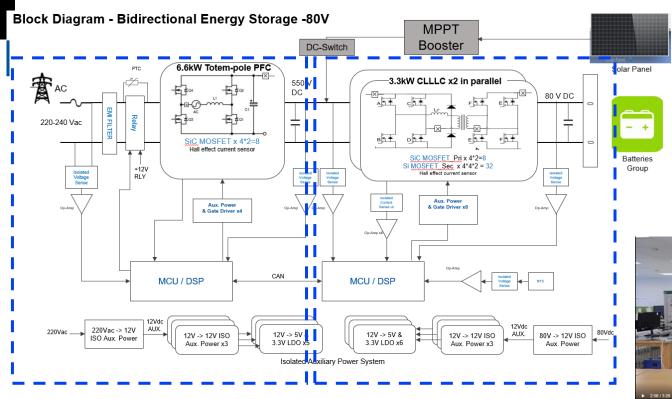
OBC – 6.6kW Bi-directional power conversion (released)

Key components

Function (Main Power)	Supplier	Part Number
SIC MOS	ST	SCTW40N120G2VAG
Gate Driver	ST	STGAP2SICS (1 Ch)
Resonant SMT Cap.	Murata	GCM43D7U3A472JX01L (New)
Resonant Sivir Cap.	iviulata	GCWI43D703A472JX01L (New)
Main E-cap	Lelon	RQL221M2GBKF1846KEGA
Film cap.	Vishay	MKP1848530094K2
Х-сар	Kemet	F863 series
MOV	ТDК	B72220S3321K101
Fuse	Littelfuse	01220093Z/0HEV030ZXBD

Function (Aux Power)	Supplier	Part Number
LDO 3.3V	ST	LDK130M33RY
ISO DC-DC 12-12V	RECOM	REM10-1212S/A*
ISO DC-DC	RECOM	REM3-1205S/A*
12-5V	Murata	NCS3S4805SC*
Gate DRV ISO DC-DC	RECOM	R12P209D*
12- +/- 9V	Murata	NMK1209SC*

Function (DSP control)	Supplier	Part Number
MCU	ST	STM32G474RE
Crystal	Abracon	ABM3C-20.000MHz-D4Y-T
CAN Choke	Murata Bourns	DLW43SH510XK2L SRF4530A-510Y
Current Sense	Allegro	ACS770LCB-050U-PFF-T
OP-AMP	ST	TSZ181IYLY
NTC	Vishay	NTCALUG01A103F161
Ferrite Bead	Murata	BLM21PG221SH1D
Ceramic SMT Cap	Murata TDK Kemet	GRT, GRM series CGA series CXXXXXXAUTO
E-cap	Kemet	EDH477M025S9PAADH
Sig. Inductor	Murata	LQM2HPZ2R2MG0L
SMT Resistor	Vishay	CRCWXXXXXXXXINED



WDW

Extension to EV charger for E-bike, Energy Storage.....

Bidirectional Energy Storage - 80V, 82.5A/ 6600W

Key ST Parts

Functions	Qty	Devices
SiC MOS	16	SCTWA60N120G2-4
SiC MOS Gate Driver- 1-CH	8	STGAP2SiCS
Gate Driver Isolated Power	12	L6986I
DC-DC low side FET	32	STP75NF20
Diode	2	STPS1150A
Isolated DC-DC/10W	6	STL8N10LF3*
MCU	2	STM32G474VBT6

Functions	Qty	Devices	
Aux	1	VIPER319HDTR	
ESD Suppression	3	HDMIULC6-4SC6Y	
ESD Suppression	2	ESDCAN03-2BWY	
Hi-Precision OP-AMP	1	TSZ181ILT	
Processor Supervisor	1	STM6825TWY6F	
Digital Isolator	2	STISO621WTR	

PFC: Lx Wx H= 450mm x 150mmx 100 mm

Bidirectional PFC (Released)

Demo video

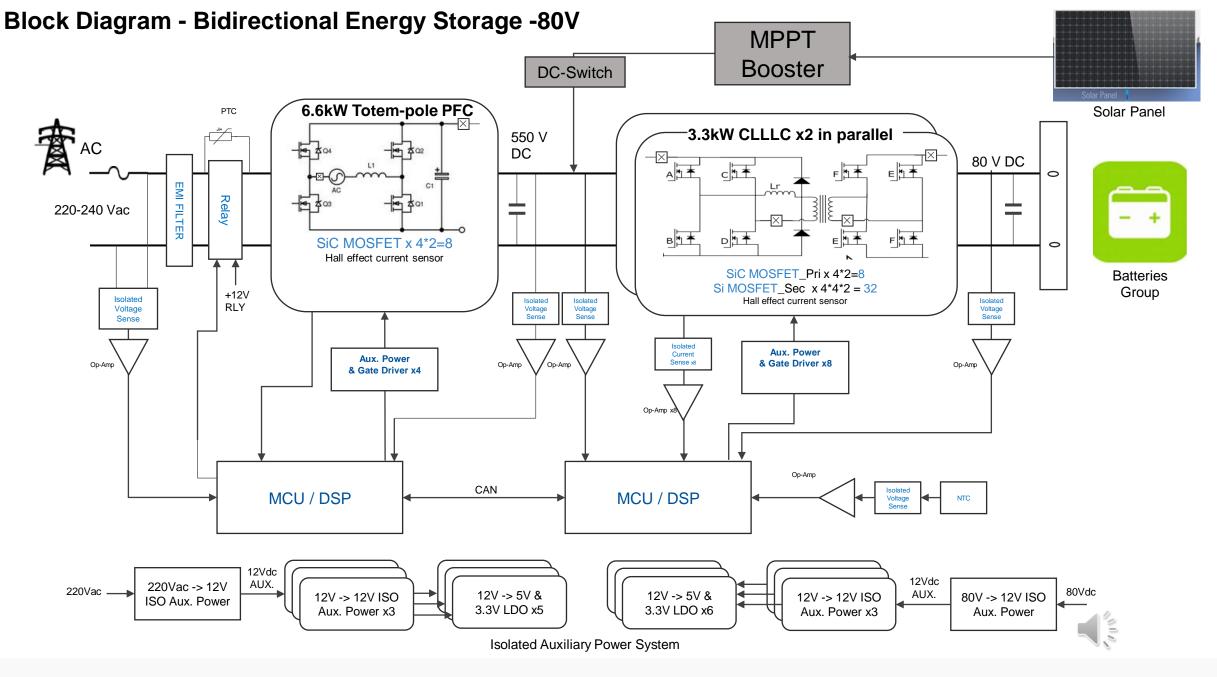
https://www.arrowopenlab.com/hk/solution_video_article/2021P005_en.html

DC-DC Lx Wx H= 450mm x 330mmx 100 mm

Bidirectional DC-DC (Release by Q4'22)

Specification:

- AC/DC Bidirectional Power Conversion
- Max Charging Power: 6.6kW
- AC Input Voltage: 180-265 VAC
- DC Output Power: 60-90VDC
- Max Inversion Power: 6.6kW
- Inversion Rated Input: 80Vdc
- Inversion rated Output: 220Vac 50Hz
- Efficiency >95%
- Totem Pole PFC 120 kHz
- CLLLC 200kHz
- Forced Cooling

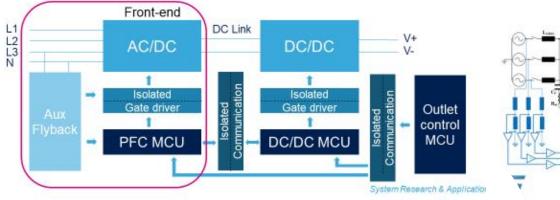

Applications:

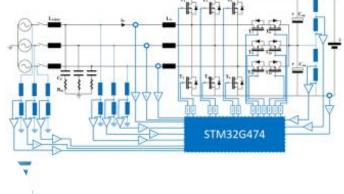
- Energy Storage
- Solar inverter with energy storage
- Forklift Charger
- AC-DC loading equipment

V Five Years Out 27

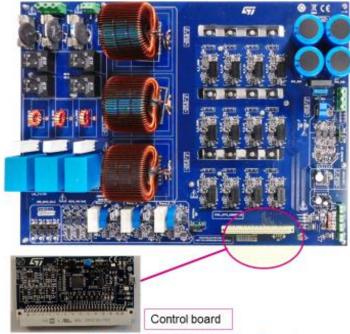
WUVI

Arrow proprietary information - Selective Disclosure only




15kW Bidirectional PFC

Front-end Power Converters



VAC 400 Vac VAC 800 Vdc Poet, max 15 kW F. 70 kHz Happer 2.5A Voil, ribple 10 Vpp PF > 0.9 THD < 5%</td>

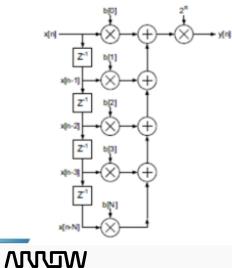
STDES-PFCBIDIR Demoboard

- > Accelerator-- Cordic
- STM32G4 Cordic 支持以下的函数:
 - 余弦Cosine (cos θ)
 - 正弦Sine (sin θ)
 - ・相位Phase (atan2 y,x)
 - 取模Modulus ($\sqrt{x^2 + y^2}$)
 - 反正切Arctangent (tan-1 x)
 - 双曲正弦Hyperbolic sin (sinh x)
 - 双曲余弦Hyperbolic cosine (cosh x)
 - 双曲反正切Hyperbolic arctangent (tanh-1 x)
 - 自然对数Natural logarithm (In x)
 - 平方根Square root (√x)

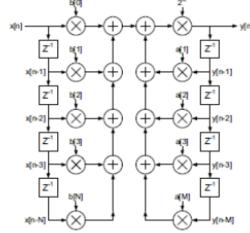
q1.15 fixed point: (precision = 4)	ARM fast math arm_sin_q15()	Cordic: zero- overhead mode	Cordic: DMA in/out mode
	36 cycles/sample	7 cycles/sample	11 cycles/sample
	-	x5 acceleration	x3 acceleration
	100%CPU	100% CPU	0% CPU
	Max error: 0.00012	Max error: 0.00004	Max error: 0.00004
	-	x3 precision	x3 precision
q1.31 fixed point: (precision = 6)	ARM fast math arm_sin_q31()	Cordic: zero- overhead mode	Cordic: DMA in/out mode
	41 cycles/sample	8 cycles/sample	12 cycles/sample
	-	x5 acceleration	x3 acceleration
	100%CPU	100% CPU	0% CPU

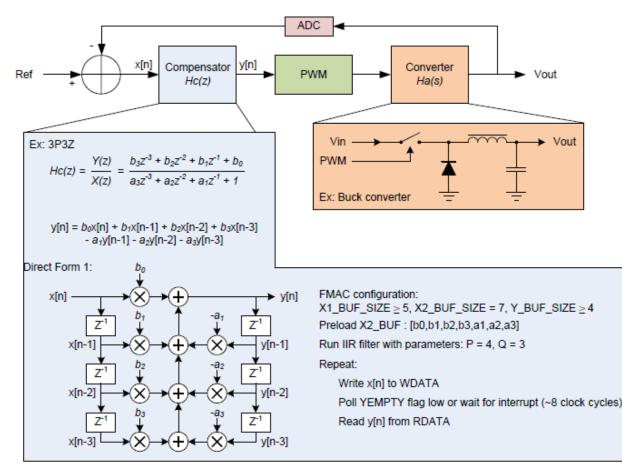
Max error: 0.000002

x10 precision


Max error: 0.00002

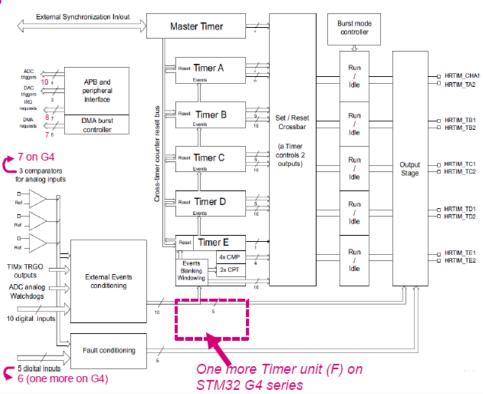
Max error: 0.000002


x10 precision


- > Accelerator-- FMAC 数字滤波加速器(FMAC)
- 可被用于生成
 - FIR, IIR
 - 补偿器 (数字电源三极点三零点3p3z)

FIR 滤波器

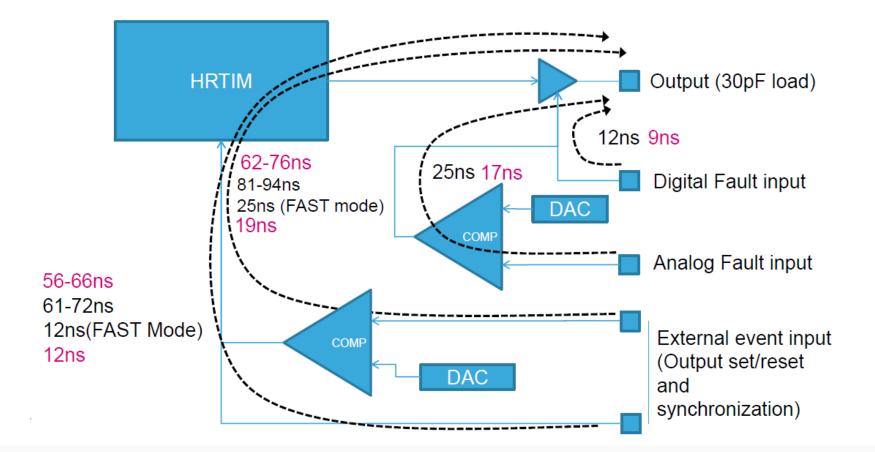
IIR滤波器



In courtesy to st.com

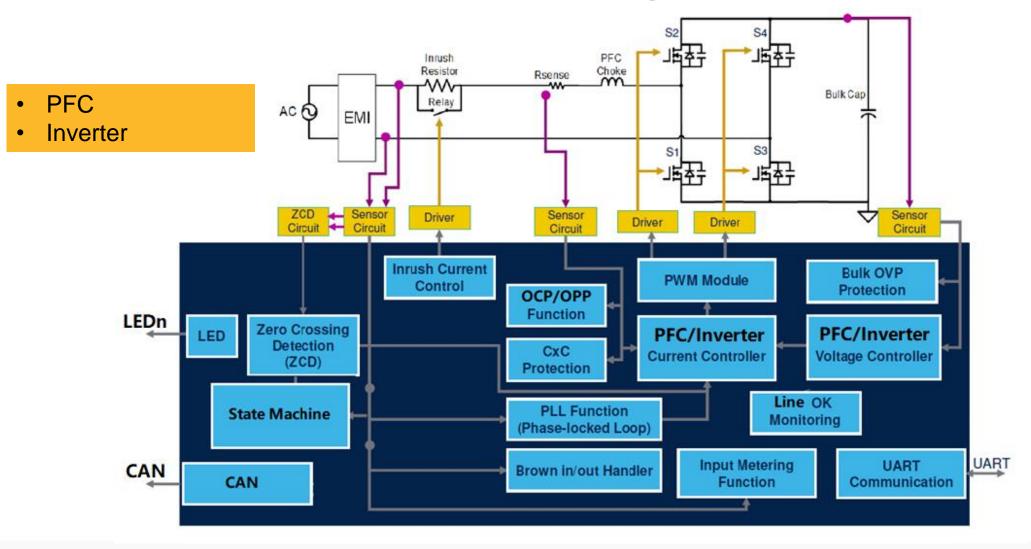
> HRPWM

- 模块架构: 主定时器+ 6 x 子定时器, 交叉同步
- 主频:170MHz, DLL 32x to 5.4G
- 高精度
 - 184ps 所有PWM输出
- 自动校准
 - ・ 无温漂/电压偏移
- 高达12 路PWM输出
- •多种故障/事件输入
- •减少软件开销
- 复合事件处理机制
 - ・消隐/窗口/超时

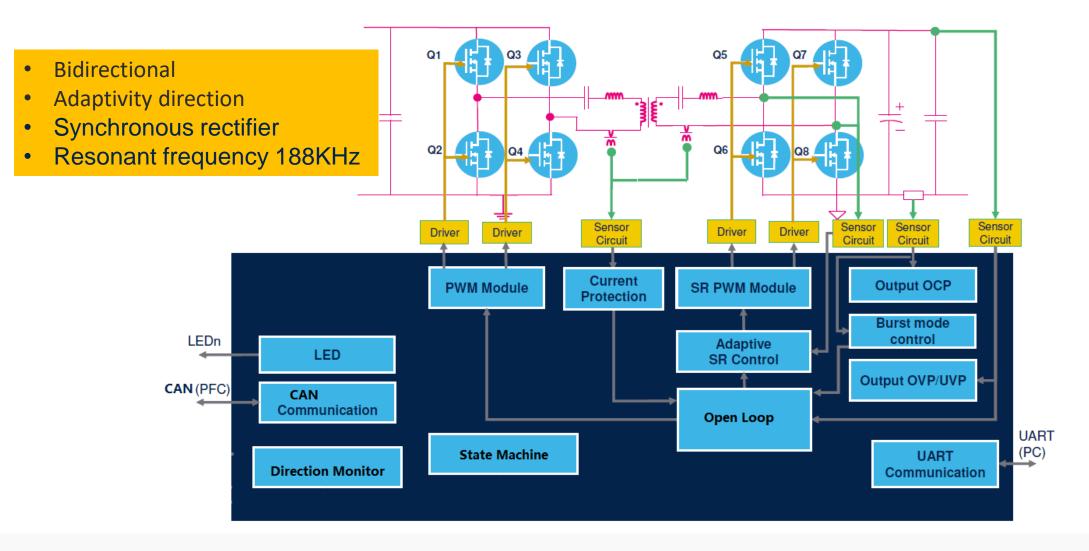


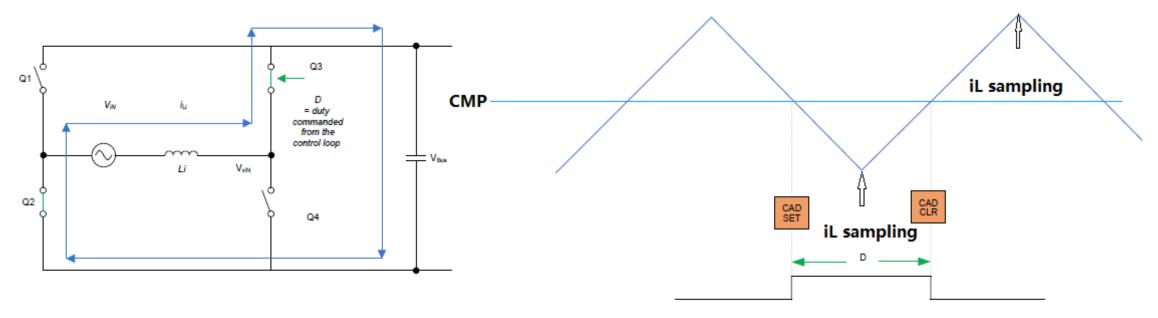
In courtesy to st.com

> ADC

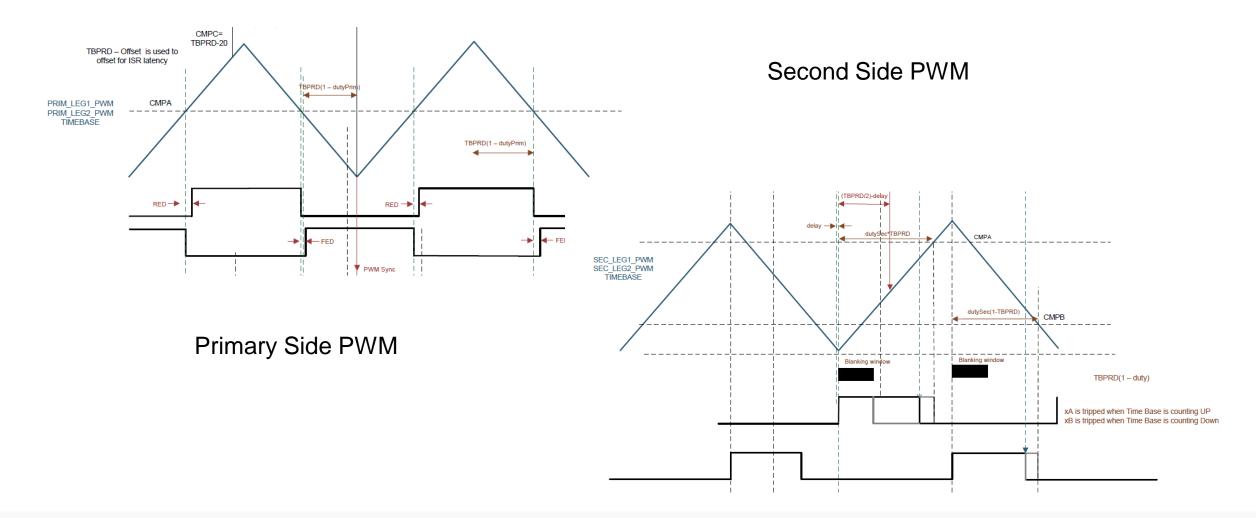

5 (only 2 for G431)	
高达42路输入, 单端/差分模式 (only 18 for G431)	
12-bit 逐次逼近	
250 nS, 4 Msamples/s (when f _{ADC_CLK} = 60 MHz)	
单次(singal)、连续(continuous)、扫描(scan)、不连续 (discontinuous)、注入(injected)	
软件启动或是外部事件触发启动(定时器或是IO)	
硬件过采样,模拟看门狗 (+滤波), 数据预处理 (偏置和增益补偿), 多种采样时间设定	
中断, DMA 请求	
Deep power-down, auto delay, 功耗取决于转换速度	

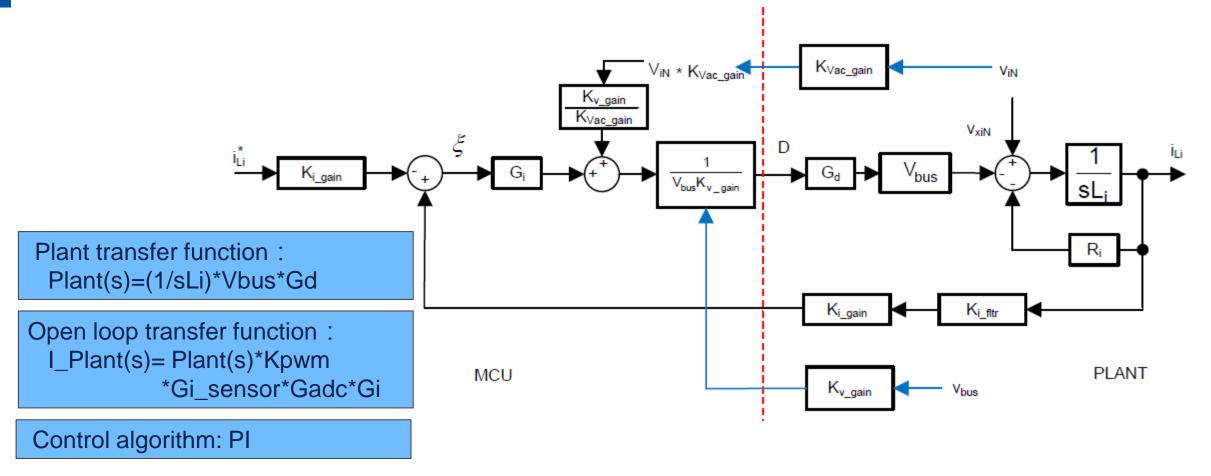
> Fast protection response



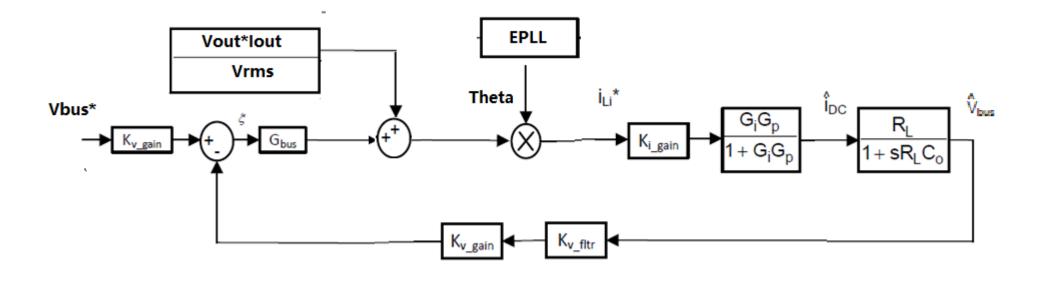

PFC/Inverter Functional Block Diagram

CLLLC Functional Block Diagram

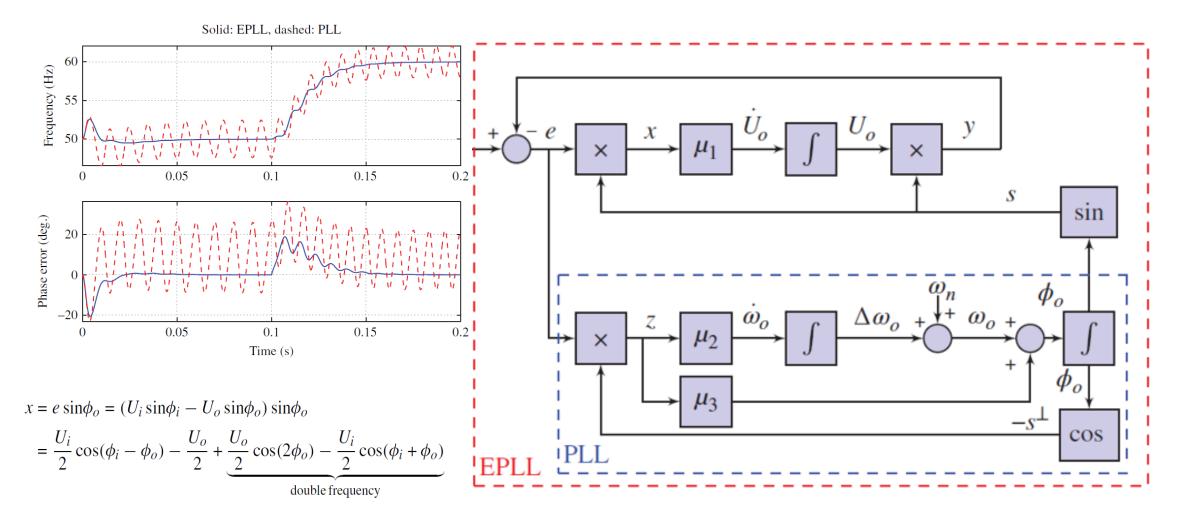

PWM Generate& Current sampling For PFC


Single-Phase Diagram of TTPL PFC

Inductor current is sampled twice per PWM switching cycle - averaged twice before being used as the current loop feedback input. It can mainly reduce the interference during sampling and ensure the balance of positive and negative half cycles.

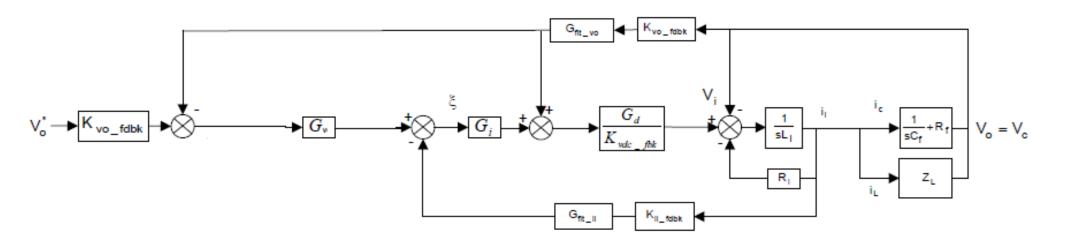

PWM Generate For CLLLC

Current Loop Block Diagram For PFC


Voltage Loop Block Diagram for PFC

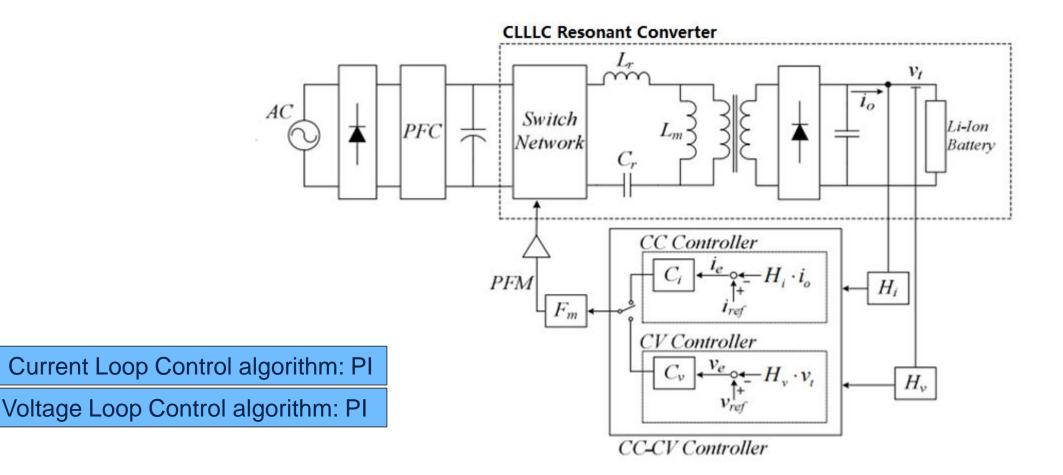
Control algorithm: PI

Voltage loop: performed at 10kHzCurrent loop: performed at 67kHz

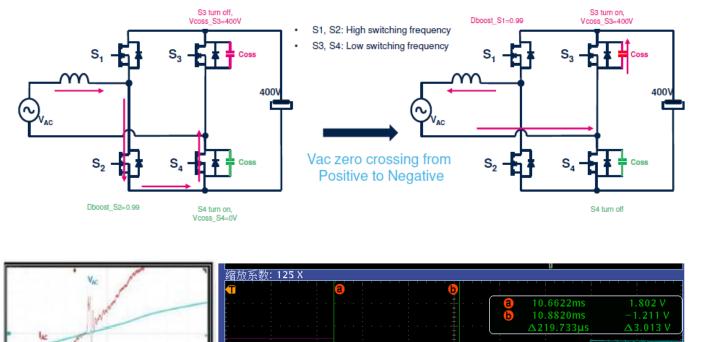

EPLL Block Diagram for PFC

In courtesy to st.com

Voltage&Current Loop Block Diagram for Inverter

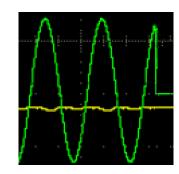


Current Loop Control algorithm: PI Voltage Loop Control algorithm: PI


• Voltage loop: performed at 67kHz

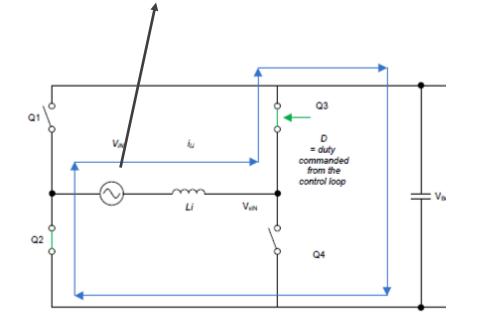
Current loop: performed at 67kHz

CC&CV Controller for CLLLC



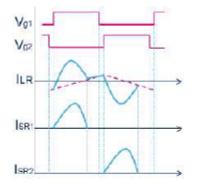
Design challenge 2 : Current spike at AC zero crossing

- The control loop should freeze during the blanking time, in order to avoid the integrator of the current loop to generate a large PWM pulse, which will cause a large current spike
- PWM soft-start at zero crossing
- All MOSFETs are turned OFF to ensure a safe permutation of the power switches control and to avoid short-circuit of the output DC capacitor


Design challenge 3 : Vac Drop (Under-voltage) Control

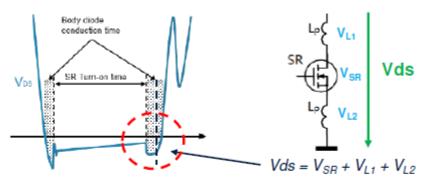
In PFC Charging mode, if the voltage of line drop to zero from higher voltage positions, what will happen?

If the mains drops from high voltage to Zero in PFC mode, the working state is changed from PFC to Inverter mode. At this moment, it is equivalent to the short circuit of the inverter output.



Solution:

- Add Grid Voltage drop Monitoring in Software
- Add Over-current Protection Detection at AC input side


Design challenge 4 : Synchronous rectifier(SR) control

Negative current caused by late SR MOSFET turn-off

- At heavy load (below resonant frequency), late SR turn off will force MOSFET conduct and cause a negative current from output capacitor
- This negative current could damage the power MOSFETs and resulting unit failure

Premature SR MOSFET turn-off

- Due to the stray inductance in series with the SR MOSFET, the sensed drain-source signal (Vds) is not really the voltage drop across the SR MOSFET (V_{SR})
- So it will prematurely turn-off SR MOSFET and cause low efficiency

Arrow Technical Support Contacts

Region	Contact Person	Mobile	Email
Taiwan	Sun Tseng	+886 905 312 832	sun.tseng@arrowasia.com
Taiwan	Vendical Wu	+886 2 7703 4630	vendical.wu@arrowasia.com

