高功率密度及高效能系統的電源設計解決方案

張仁程(Jeff Chang)
Vicor Taiwan FAE
Sep. 21, 2017
高密度功率及高效能系統的電源設計解決方案

- 前端(Front End)/負載點(POL) 電源架構改變趨勢
- 創新拓撲(Topologies)及封裝散熱創新技術介紹
- Vicor PCDM (Power Component Design Methodology) 高功率密度及高效能系統電源模組解決方案介紹
- 成功應用分享
Power Solution Trend
› Wide Input Range and High Input Voltage
› High output Power
› High Efficiency
› Power Density
› Small size
› Low weight, “Power to weight” ratio
› Thermal Dissipation
› Telemetry
EV/ Self-driving EV Power Methodology

- **HVDC 365V**
- **13.8V**
- **+48V**
- **+12V** (Regulated)

- **VIM Chip DC-DC Converter**
- **PRM SiP Regulator**
- **Factorsized Bus (26 – 55 V)**
- **VTM ChiP Current Multiplier**
- **Motors drive…**
- **CPU/GPU/MEM 0.5-2V 50-300 A**
- **12V**
- **5V**
- **3.3V**
- **1.8V~2.5V**
- **3.3V~18V**

- **Charger**
- **HV BAT.**
- **LV BAT.**
- **BMS**
- **Motors Drive**
- **Motors**
- **Fuse**

- **PoL SiP Regulator**
- **PoL SiP Regulator**
- **PoL SiP Regulator**
- **PoL SiP Regulator**
- **PoL Isolated DC-DC Converter**

- **Fuse**
- **Doors**
- **A/V**
- **Lighting**
- **GPS**
- **AC**
Bi-directional Converter for energy storage application
Telecom 48V to System/CPU Power—2 Step to 1 Step

Advantage: High Efficiency and Small Size
Telecom 1 Step 48V to CPU Power

用 PRM/VTM實現高效率及減少傳輸損耗

- 48V, 2.572A (for 1V/100A)
 81% efficiency
 23.46W
 (for 1V/100A)

- 48V, 2.269A (for 1V/100A)
 ~92% efficiency
 2.18W
 K=1/48
 (for 1V/100A)

- 48V, 2.22A (for 1V/100A)
 6.72W
 (for 1V/100A)
AC-DC Power Trend---Inside 1U/0.5U Equipment

Traditional AC to DC Power

Vicor AC to DC Power

Space for your system design

IEC Input + fuse + filtering

Rectifier + MOV

VIA PFM

Capacitor
AC UPS Datacenters

› In 2010, datacenters used 250BkWhr/yr\(^1\) costing $35B at $0.14/kWhr
› Data centers are one of the fastest growing users of electricity @ 2% of global electricity use
› US data centers to consume 140 billion kW-hrs by 2020
› Improvements in Server PUE (SPUE) for rapidly growing, massive Cloud infrastructures.

Source: NTT
48V Datacenters

Source: NTT
380V Datacenters / 380V Telecom

HVDC System (380 V)

- High efficiency (Few conversion steps)
- High reliability (Batteries directly supply power)
- Low Copper (Small current)
- Flexibility for placing ICT equipment (Long distance)

Source: NTT

Micro-grid: Solar, wind, flywheel, etc.
Data Center AC-DC/HVDC-DC Highest Power Density

- Smallest Size
- Highest Power
- Highest Power Density
- Redundant Design
- Regulation
- PMBUS Telemetry
Industrial/Datacom/Telecom Telemetry Requirement

4 Key Components Replace an Entire Collection of Conventional Devices

- PRM (Pre-regulation Module) regulates a 48 V line input
- VTM (Voltage Transformation Module) transforms the regulated 48 V to CPU power

- Cool-Power ZVS B8
- Inductor
- VTM

- PI3020 Digital Control
- PI3020 offers digital control, telemetry, and CPU communication

380 VDC (260-410 VDC)

- BCM VIA ChiP
- 1:8

48 V

- Digital Isolator
- Digital Supervisor

- PMBus™
- System Processor

LOAD
HV to LV Bus Converter to achieve highest Efficiency

- BCM 98% (380 VDC, 800W – 1.75kW)
- BCM 97% (380 VDC, 260-410 VDC, 48 VDC, 1:4 up to 1950W)
- UHV BCM 97% (540VDC, 1.5 kW)

Connections:
- BCM 98% output: 48 V (32.5 – 51.3 V)
- BCM 97% output: 12 V (8.1 – 12.8 V)
- BCM 97% output: 12 V (9 – 15 V)
- UHV BCM output: 33.75 V (25 – 43.75 V)

Conversion ratios:
- 1:8
- 1:32
- 1:16

Loads:
- 0.7 – 55 V
- 20 – 55 V
- LOAD

Notes:
- VTM
- PRM
- PO
- POL

Voltage ranges:
- 36 – 60 VDC
- 25 – 43.75 V
- 8 – 15 V
- 0.7 – 55 V
Redundant power design

Vicor advantage: Easy Parallel operation
Video Wall with 48V Distribution

Why Change
- Reduction in energy consumption
- Maximized image availability
- Reduce power supply complexity and cost

<table>
<thead>
<tr>
<th>Power Supply Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>84 – 264 V<sub>AC</sub>, 1 kW</td>
</tr>
<tr>
<td>Output</td>
</tr>
<tr>
<td>48V Bus driving 5V, 150W per panel</td>
</tr>
<tr>
<td>Load</td>
</tr>
<tr>
<td>LED Array via LED Driver Chips</td>
</tr>
</tbody>
</table>
Vicor Power Topologies Improvement to achieve highest Efficiency, highest Power Density and Low Noise

ZVS Regulator
Non-isolated, DC-DC regulator
- Pre-Regulator Module (PRM)
- Cool-Power ZVS
 - Buck, Boost, Buck-Boost

Double-Clamped ZVS (DC-ZVS)
Isolated, regulated, DC-DC or AC-DC converter
- DC Converter Module (DCM)
- Cool-Power Converters
- Power Factor Module (PFM)

Sine Amplitude Converter (SAC)
Isolated, fixed-ratio, DC-DC transformer
- Bus Converter Module (BCM)
- Intermediate Bus Converter (IBC)
- Voltage Transformation Module (VTM)
 (current multiplier)
Topology Comparison

Vicor Proprietary
正弦振幅轉換器（Sine Amplitude Converter™, SAC™）拓撲結構

SAC拓撲結構是一個處於BCM模組核心位置的動態、高效能引擎。SAC是基於變壓器的串聯諧振拓撲結構，在等於初級側儲能電路諧振頻率的固定頻率下工作。初級側的開關FET鎖定為初級的自然諧振頻率，在零交叉點開關，從而可消除開關中的功耗，提高效率，顯著減少高階雜訊諧波的產生。初級諧振回路是純正弦曲線（圖上所示），從而可減少諧波內容，提供更乾淨的輸出雜訊頻譜。由於SAC的高工作頻率，可使用較小的變壓器來提高功率密度和效率。
Factorized Power Architecture (FPA)

Why Factorized Power Architecture
- Conventional approach combines Regulation & Conversion functions in a single design
- For high current/power applications there are some costs
 - Distribution losses from on board distribution
 - Every voltage rail must have its own complete converter with both regulation and conversion.
 - Efficiency penalty due to redundant regulation and conversion stages and less optimized design
Factorized Power Architecture (FPA)

- **What is Factorized Power Architecture**
 - Separation of power conversion stages: Regulation & Voltage Transformation
 - Reduces distribution losses in a system
 - Reduces duplicated functions in the DC-DC conversion path
 - Reduces power dissipation at the Point-of-Load while increasing total system efficiency
 - Allows individual functions of Regulation and Transformation to be optimized
封裝散熱創新技術——ChiP(Converter housed in Package)

ChiP等效電路熱模型

突破性封裝技術——轉換器級封裝（ChiP）技術
為了實現更高的功率效率、功率密度和設計靈活性，功率組件封裝技術必須持續改良，因此，ChiP的推出可優化電氣和熱效能。
ChiP產品的設計在PCB兩面都有功率組件，可減少寄生導致的損耗，從而不僅可對整個封裝均勻徹底地散熱，而且還可利用頂部和底部表面進行散熱。
ChiP產品封裝在熱增強型模壓化合物中，不僅可降低溫差，而且還可為便捷使用熱管理配件（散熱器、冷板和熱管等）提供平整的模組頂部和底部表面。
Semiconductor Wafers >>> ChiP Panels

The “ChiP” packaging platform is a key enabling technology allowing Vicor to address power conversion projects with critical requirements for:

• High Power Density
• Small Size
• High efficiency
• Low Cost
“ChiP” Power Component Platform
Converter housed in Package
(Package Nomenclature: expressed in mm)

› ChiP is Flexible (topologies, applications)
 – AC-DC with PFC
 – DC-DC conversion (regulated, unregulated)
 – Buck, Boost, and Buck-Boost regulation
 – PoL current multiplication
 – Available in through hole packages
 › Surface mount (SMChiP) coming in 2017

› ChiP is Scalable (size, power)
 – Heights as low as 4.9 mm
 – 1323 to 6123 and expanding
 – Up to 180 A, 430 V, 1.8 kW and rising
封裝散熱創新技術——VIA(Vicor Integrated Adapter)

VIA封裝技術提供業界領先的功率密度。它外形小巧，寬僅為35.5 毫米，長度範圍為72 毫米至141 毫米，高僅為9.3 毫米。電路板安裝或底座安裝兩種版本之封裝都有提供，有助於工程師在最有效率的便捷位置安裝組件。

高效率雙面散熱外殼可將熱量從VIA封裝內的組件上下部散發，但只需從一面散熱就夠了，從而可在優化散熱的同時，簡化散熱設計。電源系統所需的空間可通過底座安裝版本進一步最小化，讓系統底座成為散熱設計的一部分，並且在許多應用中無需用到風扇，因而可在提升系統可靠性的同時，進一步減少所需的空間。
“VIA” Power Component Platform

Vicor Integrated Adapter
(Package nomenclature: expressed in inches X 10)

- A thermally adept, flexible, dense, housing for front-end power conversion.
 - Board-Mount or Chassis-Mount form-factors
- Ease-of-Use is built-in:
 - Integrated filtering and/or companion filter accessories
 - Inrush protection
 - Analog and Digital (w/ PMBus) control
- Focus on “Power Component Methodology”
Vicor Power Component Design Methodology
An Optimized Approach to Power Design

Optimized, modular system building blocks
› Isolated, non-isolated
› AC-input, DC-input
› Regulated, non-regulated
› High voltage, low voltage

An IC approach to higher power system integration
› Integrated power modules from 25 W to over 1,000 W
› Input operating voltages from 8 V to over 700 V (per module)

Example Power Chain Option Using Power Component Design Methodology
AC/HVDC to -48V/48V/24V

Front end

Single Phase AC
85 – 264 V

HVDC
260 – 400 V

HVDC
160 – 420 V

VIA PFM

VIA AIM

PRM SiP
Regulator

VTM ChiP
Current Multiplier

PoL
1 V, 130 A

PoL
+5 V, 20 A

PoL
-5 V, 20 A

Factorized
Bus (26 – 55 V)

VTM ChiP
Current Multiplier

VTM ChiP
Current Multiplier

12V

5V

3.3V

1.8V~2.5V

3.3V~18V

PoL Isolated
DC-DC
Converter

PoL SiP
Regulator

PoL SiP
Regulator

PoL SiP
Regulator

PoL SiP
Regulator

PoL SiP
Regulator
DC Modules (DCM) in a ChiP package

- Converter housed in Package (ChiP) power component platform
- Isolated, regulated DC-DC converters
- \(V_{\text{IN}} \): 24, 28, 30, 48, 270, 275, 290 and 300 V\(_{\text{DC}}\) nominal inputs
- \(V_{\text{OUT}} \): Predefined outputs from 3.3 to 48 V\(_{\text{DC}}\)
- Power capability:
 - Up to 600 W – 4623 ChiP
 - Up to 320 W – 3623 ChiP
- Over 93% efficient

<table>
<thead>
<tr>
<th>Nom. Input</th>
<th>Vin Range</th>
<th>Output Voltages</th>
<th>Max power</th>
<th>ChiP Package</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>200 – 420</td>
<td>48, 28, 24, 12</td>
<td>600</td>
<td>4623</td>
<td>NOW</td>
</tr>
<tr>
<td>48</td>
<td>36 – 75</td>
<td>48, 36, 28, 24, 15, 12, 5</td>
<td>320</td>
<td>3623</td>
<td>NOW</td>
</tr>
<tr>
<td>24</td>
<td>18 – 36</td>
<td>48, 36, 28, 24, 15, 12, 5</td>
<td>320</td>
<td>3623</td>
<td>NOW</td>
</tr>
<tr>
<td>290</td>
<td>160 – 420</td>
<td>13.8</td>
<td>600</td>
<td>4623</td>
<td>NOW</td>
</tr>
<tr>
<td>270</td>
<td>160 – 420</td>
<td>48, 28, 24, 15, 12, 5, 3.3</td>
<td>500</td>
<td>4623</td>
<td>NOW</td>
</tr>
<tr>
<td>28</td>
<td>16 – 50</td>
<td>48, 28, 24, 15, 12, 5, 3.3</td>
<td>320</td>
<td>3623</td>
<td>NOW</td>
</tr>
<tr>
<td>30</td>
<td>9 – 50</td>
<td>48, 28, 24, 15, 12, 5, 3.3</td>
<td>160</td>
<td>3623</td>
<td>NOW</td>
</tr>
<tr>
<td>275</td>
<td>120 – 420</td>
<td>48, 28, 24, 12, 5, 15, 3.3</td>
<td>375</td>
<td>4623</td>
<td>3Q17</td>
</tr>
<tr>
<td>100</td>
<td>43 – 154</td>
<td>48, 28, 24, 15, 12, 5, 3.3</td>
<td>240</td>
<td>3623</td>
<td>3~6 Months</td>
</tr>
<tr>
<td>42</td>
<td>9 – 75</td>
<td>48, 28, 24, 15, 12, 5, 3.3</td>
<td>80</td>
<td>3623</td>
<td>3~6 Months</td>
</tr>
</tbody>
</table>
DC Modules (DCM) in a VIA package

› VIA Power Component Platform – a ‘better brick’
 – Isolated, regulated DC-DC converters
 – Easy to use, robust and reliable, thermally adept, integrated filtering
 – Chassis or PCB mounting options, secondary side controls, low profile

› VIN: 28, 48, 270 and 300 VDC nominal inputs, more to follow

› VOUT: Predefined outputs from 5 to 48 VDC, regulated, isolated

› Power capability:
 – Up to 600 W – 3714 platform
 – Up to 320 W – 3414 platform

› Over 93% efficient

› M grade (-55 C operation) available on selected models

<table>
<thead>
<tr>
<th>Package/Input voltage</th>
<th>Output Voltage/Power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 V</td>
</tr>
<tr>
<td>3714/300 Vin (200-420 V)</td>
<td></td>
</tr>
<tr>
<td>3714/270 Vin (160-420 V)</td>
<td>250 W</td>
</tr>
<tr>
<td>3414/28 Vin (16-50 V)</td>
<td>180 W</td>
</tr>
<tr>
<td>3414/48 Vin (36-75 V)</td>
<td>160 W</td>
</tr>
</tbody>
</table>

* Release 3Q17
^ M grade versions available
MIL-COTS MFM™ Filter Modules

28 and 270 Nominal Input Voltages
› 270 V\textsubscript{DC} (160 – 420 V) nominal input, provides MIL-STD-461/704 compliance
 – Up to 640 W – compatible with 270 V\textsubscript{IN} VIA DCM modules
› 28 V\textsubscript{DC} (16 – 50 V) nominal input, provides MIL-STD-461/704/1275 compliance
 – Up to 350 W
 – 28 V\textsubscript{IN} versions will need to be paired with the 28 V\textsubscript{IN} VIA DCM modules for MIL-STD-1275 transient protection
 – Provides operation down to -55°C
› 28 and 270 Vin filters are designed for use with the VIA DCMs, additional filtering will be needed with DCM ChiP products
 – Contact Applications for guidance

Small Size
› 1714 package
› 1.76 \times 1.40 \times 0.36 \text{ in.} (44.6 \times 35.5 \times 9.2 \text{ mm})
High Power DCM5614 in VIA package

- Provides voltage transformation, isolation, and regulation
 - Wide input voltage range: 260V-420V(380V), 180-420V(270V,330V)
 - High Output Power (11.5V-15.5V/130A, 43V-55V/33A)
 - High Output Power (22V-36V/36A, 11.5V-15.5V/100A)
 - Benchmark efficiency & power density
 - Parallel capability
 - Outputs can be stacked for higher V_{OUT}
 - Integrated filtering, inrush/transient protection
 - Analog or Digital Communication
 - Support for high capacitance loads

- Available Packages
 - Announced: Board Mount & Chassis Mount VIA
 - Future: SMT Chip and Super-Brick

- Target markets:
 - Telecom/Data Center Front End (DC-DC)
 - 3 Phase Industrial Front End (DC-DC)
 - 3 Phase Military Power Systems

<table>
<thead>
<tr>
<th>Input Range</th>
<th>Output Range</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>260-420V (380V)</td>
<td>11.5 - 15.5V</td>
<td>5614 VIA</td>
</tr>
<tr>
<td>260-420V (380V)</td>
<td>43.0 – 55.0V</td>
<td>5614 VIA</td>
</tr>
<tr>
<td>180-420V (270V)</td>
<td>22.0 – 36.0V</td>
<td>5614 VIA</td>
</tr>
<tr>
<td>180-420V (330V)</td>
<td>11.5 – 15.5V</td>
<td>5614 VIA</td>
</tr>
</tbody>
</table>
AIM/PFM: Lowest profile AC-DC power system components

› The PFM is an isolated, regulated converter in a VIA package
 – Input: Rectified single phase AC
 – Output: regulated 24 or 48 Volts
 – Chassis or board mount, C & T grades
 – Available in 400 W

› The AIM is filtering & rectification in a VIA package
 – Input: Single Phase AC
 – Output: Rectified single phase AC

› The AIM + PFM meet required safety and conducted EMI standards
 – Class B per EN55022
 – External TMOV required for EN61000-4-5 compliance for surge immunity

<table>
<thead>
<tr>
<th>Product</th>
<th>Tested w/AIM?</th>
<th>V\textsubscript{OUT}</th>
<th>EN55022</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFM4914</td>
<td>NO</td>
<td>48</td>
<td>Class A</td>
</tr>
<tr>
<td>PFM4914</td>
<td>NO</td>
<td>24</td>
<td>Class A</td>
</tr>
<tr>
<td>AIM1714 & PFM4414</td>
<td>YES</td>
<td>48</td>
<td>Class B</td>
</tr>
<tr>
<td>AIM1714 & PFM4414</td>
<td>YES</td>
<td>24</td>
<td>Class B</td>
</tr>
</tbody>
</table>
BCM – ChiP Packages
High Power and PMBus™ Digital Management Interface

Vicor’s New BCM ChiPs sets new bar for power density
› Power: Up to 2.4 kW in a 2.2 in² footprint
› Power Density: Up to 5,500 W/in³

Digital telemetry to Vicor’s ChiP BCMs
› PMBus compatible management interface for real time monitoring and control
 – Current PMBus chipset includes Vicor Digital Supervisor + Isolator companion chips + ChiP BCM
 – New single chip Point-of-Load Isolator (PLI) will integrate digital supervisor and isolator functions (available in 3~6 Months).
 – Digital control available for both ChiP and SM ChiP form-factors
 – Secondary referenced control interface enables real time power system telemetry
BCM – VIA Packages
Themally Enhanced, Integrated Functionality
› Unique packages integrate key functions
› Thermally adept housing simplifies thermal design
› Integrated filtering to help achieve required conducted emissions
› Integrated PMBus with secondary-side control for real time monitoring and communication
› Transient voltage suppression, surge protection
› PCB mount and chassis mount options

“The PMBus name SMIF, Inc. and logo are trademarks of SMIF, Inc.”
Released: 4414 Ultra High Voltage BCM VIA
Modules provide voltage transformation and isolation

› Two UHV Models:
 1. 400 – 700V, K=1/16, 1.60kW, 97% efficiency, Released
 2. 500 – 800V, K=1/16, 1.60kW, 97% efficiency, 3~6 Months

› Features/Benefits:
 – Unique “Ultra-High-Voltage” Input Range
 – Up to 40A continuous current
 – Industry benchmark efficiency & power density
 – Parallel capability
 – 4414 VIA Board-mount & Chassis-mount form-factor
 – Integrated filtering, inrush/transient protection
 – PMBus™ Communication
 – C/T-Grade Available now, M-Grade to release 3~6 months

› Target Applications:
 – DC-DC section of 3Φ AC-DC converter
 › 400-700V$_{IN}$ for 380V$_{RMS}$ & 400V$_{RMS}$
 › 500-800V$_{IN}$ for 480V$_{RMS}$

400-700V$_{IN}$ Part Numbers

<table>
<thead>
<tr>
<th>Part Numbers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCM4414VGOF4440C02</td>
<td>Chassis Mount, C-Grade</td>
</tr>
<tr>
<td>BCM4414VGOF4440T02</td>
<td>Chassis Mount, T-Grade</td>
</tr>
<tr>
<td>BCM4414BGOF4440C06</td>
<td>Board Mount, C-Grade, Short Pin</td>
</tr>
<tr>
<td>BCM4414BGOF4440T06</td>
<td>Board Mount, T-Grade, Short Pin</td>
</tr>
<tr>
<td>BCM4414BGOF4440C10</td>
<td>Board Mount, C-Grade, Long Pin</td>
</tr>
<tr>
<td>BCM4414BGOF4440T10</td>
<td>Board Mount, T-Grade, Long Pin</td>
</tr>
</tbody>
</table>
PRM/VTM Solutions

High power density load point (POL) power solutions

- Single Phase AC: 85 – 264 V

- VIA PFM
- VIA AIM

- PRM SIP Regulator
- Factorized Bus (26 – 55 V)
- VTM Chip Current Multiplier
- VTM Current Multiplier

- Pol SiP Regulator
- Pol SiP Regulator
- Pol SiP Regulator
- Pol Isolated DC-DC Converter

- 48 VDC
- 48 VDC
- 48 V, 24 V DCC

- 12V
- 5V
- 3.3V
- 1.8V~2.5V
- 3.3V~18V

PoL 1 V, 130 A
+5 V, 20 A
-5 V, 20 A

Factorized Bus (26 – 55 V)
Factorized Power Architecture

- Set Factorized bus (PRM output) voltage, Choose appropriate K-factor VTM according to output requirement.
- Special (non-standard) output voltage can be achieved by trimming PRM output voltage
The “Factorized” (FPA V*I ChiP) Advantage

PRM: Zero Voltage Switching (ZVS) Buck-boost regulator

VTM: Broadband ZVS and Zero Current Switching (ZCS) DC Transformer

Voltage Feedback (Remote Sense)

Control / Feedback

48V → Cool-Power ZVS BB → Inductor → VTM → CPU GPU

98% 96% 99.9%

The "Factorized" (FPA V*I ChiP) Advantage

高功率密度負載點(POL)電源解決方案
The VR13 with 48V Direct to CPU

PRM and Controller placed on board edge

Only VTM itself placed by CPU
Vicor VR13/P9/GPU/ARM-based/Memory Solution

› PRM
 - Input Voltage: 38 – 60 V
 - Output Voltage: 20 – 55 V
 - Max. Output Power: 400 W
 - Peak switching Frequency: >2MHz

› VTM
 - Has specs pushed up to 95A DC and 228A peak for VR13
 - Up to 330A TDC for P9
 - Peak switching ripple frequency: >3MHz
 - Truly isolated VTM

› Controller
 - Digital Controller
 - SVID
 - AVS
 - SVI-2
Cool Power: Isolation/Non-Isolation

Single Phase AC
85 – 264 V

HVDC
260 – 400 V

HVDC
160 – 420 V

Front end

PRM SiP Regulator

Factorized Bus (26 – 55 V)

VTM ChiP Current Multiplier

VTM Current Multiplier

VIA PFM

Sel

+5 V, 20 A

-5 V, 20 A

48 VDC

48 VDC

48V, 24V VDC

PoL 1 V, 130 A

PoL SiP Regulator

PoL SiP Regulator

PoL SiP Regulator

PoL Isolated DC-DC Converter

5V

3.3V

1.8V~2.5V

3.3V~18V
48V to PoL Power: ZVS Buck – PI352x

- Wide input voltage range of 30V to 60V
- Parallel capable with single wire current sharing
- Input Over/Under voltage Lockout (OVLO/UVLO)
- Output Overvoltage Protection (OVP)
- Over temperature Protection (OTP)
- Fast and slow current limits
- Differential amplifier for output remote sensing
- User adjustable soft-start & tracking
- -40° C to 125° C operating range (TJ)

<table>
<thead>
<tr>
<th>Device</th>
<th>Output Voltage</th>
<th>Iout Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI3523-00-LGIZ</td>
<td>3.3V, 2.2 to 4.0V</td>
<td>22A</td>
</tr>
<tr>
<td>PI3525-00-LGIZ</td>
<td>5.0V, 4.0V to 6.5V</td>
<td>20A</td>
</tr>
<tr>
<td>PI3526-00-LGIZ</td>
<td>12V, 6.5V to 14V</td>
<td>18A</td>
</tr>
</tbody>
</table>
48V to PoL Power: PI354x Series
48Vin Optimized ZVS Buck Regulator

- Wide input voltage range of 36V to 60V
- 10x10mm LGA SiP package
- Parallel capable with single wire current sharing
- Input Over/Under Voltage Lockout (OVLO/UVLO)
- Output Overvoltage Protection (OVP)
- Over Temperature Protection (OTP)
- Differential amplifier for output remote sensing
- Wide -40°C to 125°C operating range
Wide Output Cool-Power ZVS Buck-Boost – PI3740

- Operates from wide 8-60Vin to wide 10-50Vout
- Up to 96% efficiency
- 50–140W continuous output power
- Parallel capable with single wire current sharing
- External frequency synchronization / interleaving
- High Side Current Sense Amplifier
- General Purpose Amplifier
- Lighting / Constant Current Mode (LGH)
- Input Over / Undervoltage Lockout (OVLO / UVLO)
- Output Overvoltage Protection (OVP)
- Overtemperature Protection (OTP)
- Fast and slow current limits
- -40° C to 115° C operating range (Tj)
- Excellent light load efficiency

Minimal external components required.
Cool-Power ZVS Buck-Boost – PI3741

- 21V to 60V Input operating range
- Up to 97% efficiency
- 150W of continuous output power (for specific conditions)
- Fast transient response
- Parallel capable with single wire current sharing
- External frequency synchronization / interleaving
- High Side Current Sense Amplifier
- General Purpose Amplifier
- Input Over/Under voltage Lockout (OVLO/UVLO)
- Output Overvoltage Protection (OVP)
- Over Temperature Protection (OTP)
- Fast and slow current limits
- -40°C to 115°C operating range (TJ)
- Excellent light load efficiency

<table>
<thead>
<tr>
<th>Device</th>
<th>Output Voltage Set</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI3741-00-LGIZ</td>
<td>24 V</td>
<td>21 to 36 V</td>
</tr>
<tr>
<td>PI3741-01-LGIZ</td>
<td>48 V</td>
<td>36 to 54 V</td>
</tr>
</tbody>
</table>
Vicor PFM Family - Target Applications and Benefits

Features and Benefits

- Small size and low profile
- Low weight and Easy thermal dissipation
- Rugged VIA packaging
- Integrated filtering, transient protection, inrush protection
- High efficiency
- Power factor correction
- Universal input
- Combines with AIM1714

LED Lighting

Small Cell Base Station

Industrial Power Systems
Vicor Solution for Wireless Infrastructure

- Regulators products which can support both 28V LDMOS and 48V GAN FET PA architectures
- Small Cell Wireless

Remote Radio Units
Deployed with Antenna/PI3525
Consideration parameters for power solution:
Size, Weight and Power density…and cost - SWaP/C
Electric Vehicles (EV) 應用

365V to 13.8V/1.8 kW EV & HEV DC-DC Converter

Customer Advantage
- High power density/small size
- Wide input range (160V~420V input for DCM290)
- Excellent efficiency
- Easy parallel operation
- Low noise
- Ease of cooling
- Reliability

Efficiency vs. Load

1 DCM Active
2 DCMs Active
3 DCMs Active
4 DCMs Active

ECO Array
Simple DCM Array
Applications: Electric Vehicles

HV Battery 160V – 450V 2-Stage DCM 13.8V LV Battery
Tethered UAV/ Balloon/Under water robot/ Phase array system

3 Phase

AIM
540VDC
(400-700 VDC)
(500-800 VDC)
1.5 kW

UHV BCM
1:16
33.75 V
(25 – 50 V)

PRM
26 – 55 V

VTM
0.7 – 55 V

LOAD
Customer Advantage

DESIGN TIME
using the PCDM and our supporting tools.

CABLING BY 16X
by switching from 12V to 48V distribution.

Shipping and Installation
by using higher integrated modules.

OPERATION EXPENSES
when your system runs more efficiently and you save energy.

THE BOTTOM LINE OF THE BOM
by using fewer, more flexible modular components.
電源配置：典型方法 vs 平均方法

900瓦的週期性負載，25%的佔空比

典型方法：320Wx3
平均方法：320Wx1 with Cap
Customer Advantage

- Optimize efficiency, size and cost effectiveness
- Optimal and flexible architecture for changing requirements
- High efficiency, small size, low cost, and bi-directional power (regulation and transformation) are all deemed critical requirements

Unique capability of the BCM Bus Converter to operate in reverse
- High density of BCM
- High efficiency of BCM
- PMBus™ for control and system monitoring
Automated Test Equipment (ATE)

Customer Advantage

- Benchmark power density
- Proven reliability
- Low profile packaging
- Advanced architecture to minimize power distribution losses.
- Low noise
- Modular approach for fast designs
High Power Solution in Railway Applications

- Component filtering solutions for railway applications – providing transparent protection, inrush current limiting, and EMI filtering
- Wide input voltage range to meet railway standards
- Robust packaging for harsh railway environments
- Vicor ZCS/ZVS topology-high power density/efficiency and low noise
- Power expansion by paralleling easily

EN50155
RIA12

43V-154Vdc

EMI filter
DC-DC Converter

14V-68Vdc

12V, 24V, 48Vout

Cool-Power 2VS Buck
PI3xx/PI34xx/PI35xx

12V, 24V, 48Vout

1 - 24 Vout

VI/VE-J00
VI/VE-200
Mini/Micro/Maxi
2223DCM 3623DCM

PI3xx/PI34xx/PI35xx

Cool-Power 2VS Buck

For 43 – 110 Vdc
66 – 154 Vdc

Customer Advantage
About Vicor

› Founded in 1981 on a platform of innovation
 – Head Quarter and factory facilities based on Andover, MA, USA.
 – 155+ patents on power trains, control systems, components and packaging technology
 – 16% of gross revenue re-invested in R&D
 – Nasdaq listed “vicr”

› High density, high efficiency modular solutions to power system requirements
 – From the power source to the point of load
 – Architectural options, optimal component selection and online simulation tools
End

Thank You