Design and Implementation of Future EV, Green Energy and Power System by Using Wolfspeed SiC

Wolfspeed OCT. 2021.

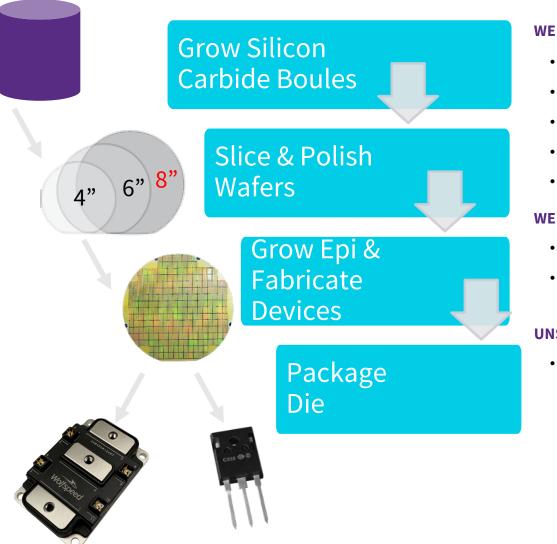
© 2021 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc.

AGENDA

- Wolfspeed Introduction
- Introduction of SiC
- Advantages of Silicon Carbide (SiC)
- Wolfspeed SiC Application Design
 - **EV** Fast Charging
 - **Given Solar Power**
 - □ Offline Switch Mode Power Supply
- Tips of Gate Driving with SiC MOSFETs

NEW NAME, NEW TICKER-SAME DEDICATED PARTNER

WHAT'S CHANGED


- On October 4, 2021, we officially began operating as Wolfspeed, Inc. and trading under the ticker symbol "WOLF" on the NYSE.
- This marks the culmination of our transformational journey as we now lead the industry transition from silicon to Silicon Carbide as a pure-play, global semiconductor powerhouse.

WHAT IT MEANS

- This is a natural progression that builds on our unsurpassed reputation of developing silicon carbide solutions and capitalizes on the competitive positioning the Wolfspeed brand has in the market.
- By sharpening our focus on our portfolio of silicon carbide products, we're now in the best position to lead a once-in-a-generation technology shift and create the products and materials that our customers use to power a cleaner, better future.

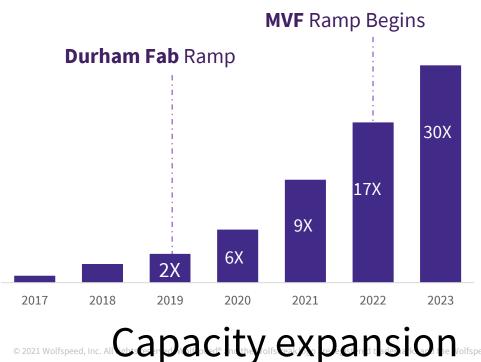
WOLFSPEED AT A GLANCE Headquarters: Durham, North Carolina **Founded:** 1987 **Global Footprint:** 17 Countries Website: www.wolfspeed.com Stock Symbol: WOLF Stock Exchange: NYSE **People:** ~3,500 Employees **History:** 30+ years of technology leadership **Revenue:** \$525.6M in FY2021 **Innovation**: ~2,140 Issued Patents

DEEP DOMAIN EXPERTISE SETS US APART

WE ARE THE ONLY VERTICALLY-INTEGRATED POWER & RF SUPPLIER

- Global market-leading position in Silicon Carbide materials and wafers
- 30+ years of intellectual property and expertise
- Over six trillion field hours for Silicon Carbide power devices
- Thousands of customers with millions of MOSFETS and diodes in use
- Unmatched cycles of learning

WE ARE EXPERTS IN THE SCIENCE OF SILICON CARBIDE FABRICATION


- Our team has in-depth knowledge and experience in the complex process of crystal production
- Silicon Carbide crystals require an extremely hot temperature to grow (2,500 degrees Celsius) and we've mastered control over this environment

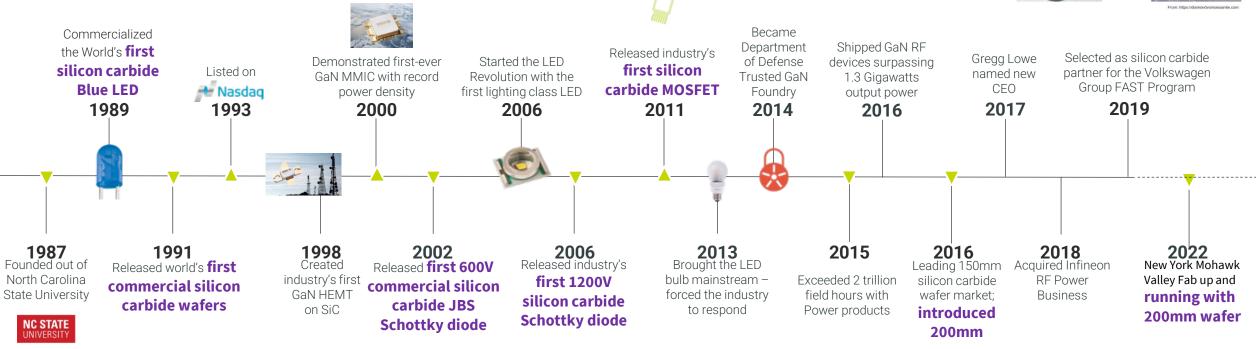
UNSURPASSED INTELLECTUAL PROPERTY PORTFOLIO

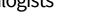
• Our IP portfolio for GaN and Silicon Carbide devices covers a breadth and depth of highperforming, reliable products that no other company matches

BUILDING A POWERHOUSE SEMICONDUCTOR COMPANY

- Accelerating Capital Investment Plan
- Ramping Mohawk Valley at 200mm
- Renaming the Company **Wolfspeed**

484,000


SQ FT STATE-OF-THE-ART FABRICATION FACILITY


>30X INCREASE IN SILICON CARBIDE WAFER FABRICATION PRODUCTION

200mm AUTOMOTIVE-QUALIFIED PRODUCTION FACILITY

BRIEF HISTORY OF SIC AND WOLFSPEED

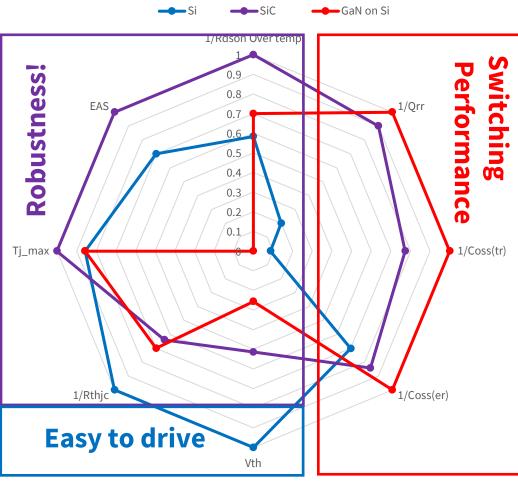
- In contrast to diamonds, **SiC** is never found on this world (and thus never became a valued gemstone in the past). Only in fragments of other worlds (i.e. meteorites), on occasion contain SiC as has been found by Moissan in 1905. Mineralogists thus call "natural" SiC "Moissanite".
- In **1955**, **Lely** made the next big step in inventing the "**Lely growth method**" to grow **SiC** crystal
- 1987 Cree Research Inc., the first commercial supplier of SiC substrates, was founded

VS

https://www.tf.uni-kiel.de/matwis/amat/semi en/kap a/advanced/ta 1 3.html

DIAMOND

MOISSANITE


ADVANTAGES OF SILICON CARBIDE (SIC) KEY PARAMETERS COMPARISON SI VS. SIC VS. GAN

Tj_max→ Higher is better. Robustness Winner: **SiC**

EAS→ Higher is better.
Robustness
Winner: SiC. No EAS
capability for GaN

Rthjc→ Lower is better. Thermal performance Winner: **Si**

Vth→ Higher is better. Immunity to noise. Easy to drive Winner: Si. Very low Vth for GaN

Rdson over temp \rightarrow Lower is better. Lower loss @high T \rightarrow High efficiency, deliver higher power, Winner: **SiC Orr** \rightarrow Lower is better. Switching loss for CCM sync rectifier Winner: GaN, SiC is close to GaN **Coss(tr)** \rightarrow Lower is better. dead time / Lm design \rightarrow high frequency and efficiency Winner: GaN, SiC is close to GaN **Coss(er)** \rightarrow Lower is better. Minimum switching losses in hard-switching topologies Winner: GaN, SiC, Si is not too bad

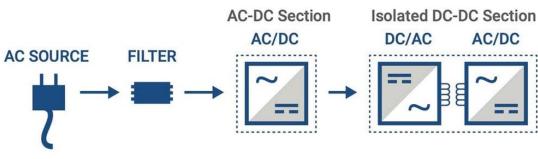
APPLICATION:

EV Fast Charging

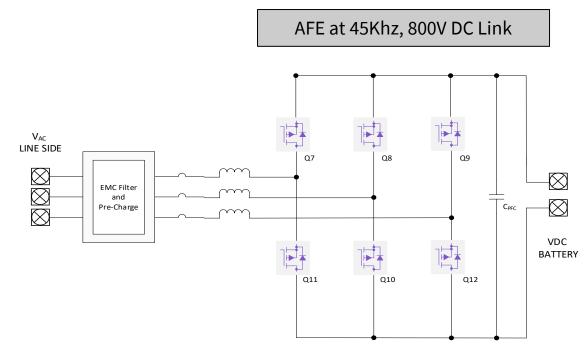
WHAT: Fast charging DC stations: 30 min charge duration. Bypasses OBC for rapid direct battery charging.

WHERE: PHEV, BEV battery charging 90kW – 350kW (average 160kW).

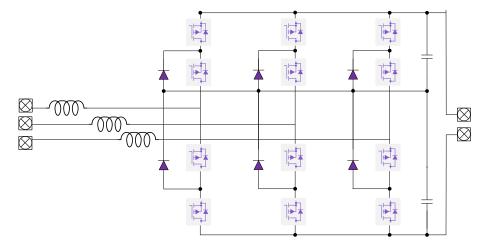
- DC charge from station to car.
- Typically today constructed from multiple 20-30kW blocks.


WHY: System cost, System efficiency, Power density (smaller stations), charger maintenance/up time. Future trends bidirectional energy flow

SIC ADVANTAGE:


- ~1-2% higher efficiency, 35-50% increase in power density at comparable system costs
- Less overall system cooling, smaller and cheaper mechanical housing
- Enables better Bidirectional charging for V2G / V2H

3-PHEASE 2-LEVEL ACTIVE FRONT END (AFE) | BI-DIRECTIONAL


BENEFITS	CHALLENGES
 1200V SiC enables Simple 2-Level bidirectional AFE SiC enables Smaller choke with 2.5x Fsw Low component count and Low Cost Mature Control Scheme 	 Cant reduce frequency further to balance core loss High DC+/DC- swing/voltage MOSFET stress , High switching loss Hard switched 2-Level topology – EMI concerns

6 x 1200V 32mOhm Discrete SiC MOSFET (22kW) or 1 x CCB021M12FM3 Wolfspeed WolfPACK(25kW) or 2 x CCB021M12FM3 Wolfspeed WolfPACK(50kW)

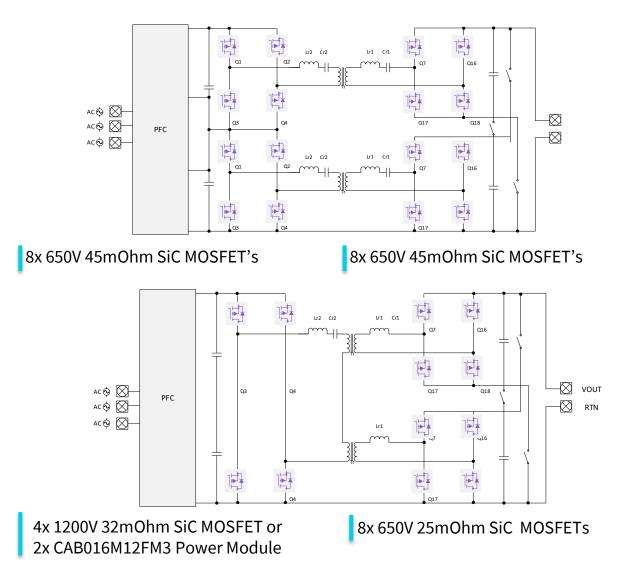

Cost	IGBT	SiC
Switch	32%	62%
Choke	40%	19%
Driver	9%	9%
Thermal	19%	10%

METRIC	IGBT	SiC
Fsw	20kHz	45kHz
Power Density	3.5kW/L	4.5kW/L
Efficiency	97.2%	98.2%

20-30KW A/NPC, TNPC AC-DC CONVERTER | BI-DIRECTIONAL

12x 650V SiC 25mOhm MOSFET + 6x 650V 16A SiC Schottky Diode

6x 1200V 32mOhm SiC (Outer) + 6x 650V SiC 45mOhm MOSFET (Mid)

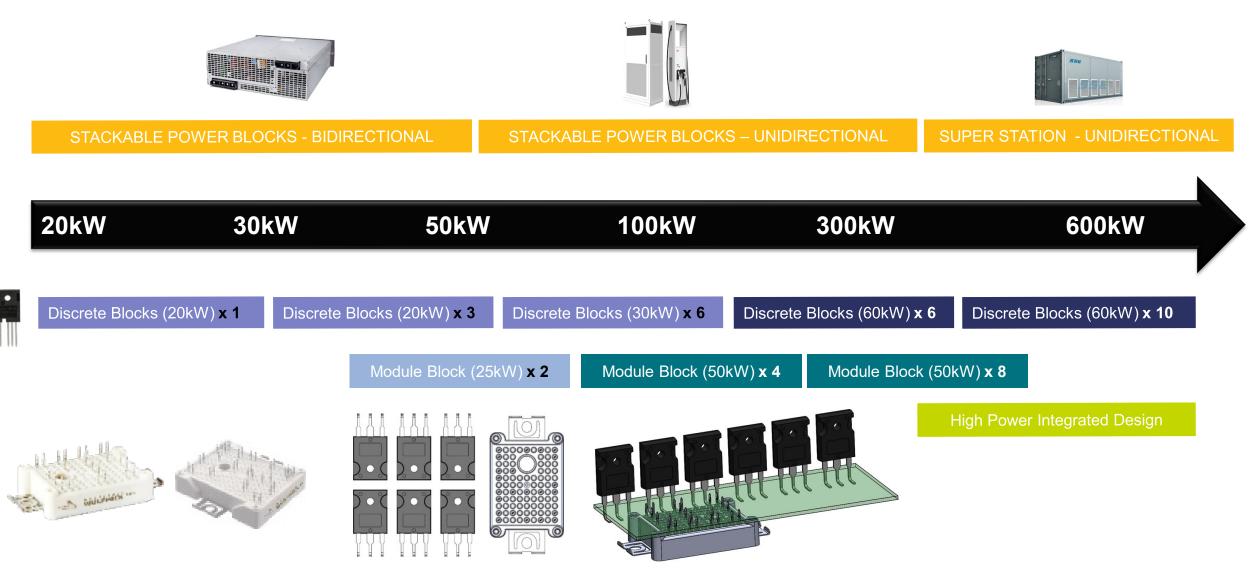

SiC BENEFITS vs Si

- Simple Si to SiC transition
- SiC Diode eliminates reverse recovery current for higher efficiency
- Lower power loss

SiC BENEFITS vs Si

- 1200V SiC enables high frequency operation (>45kHz)
- Reduce magnetics size
- Lower power loss

20-30KW CASCADE LLC/ 2LEVEL LLC DC-DC CONVERTER | BI-DIRECTIONAL


SiC BENEFITS vs Si

- Simple Si to SiC transition
- SiC enables high frequency operation (up to 200kHz)
- Lower power Loss

SiC BENEFITS vs Si

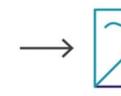
- 1200V SiC enables 2 Level design
- Series LLC Transformer
- SiC enables high frequency operation (up to 200kHz)
- Lower power Loss

Wolfspeed SiC In DC Fast Charger Applications

© 2021 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc.

APPLICATION:


Offline Switch Mode Power Supply


WHAT: Silicon Carbide MOSFETs and DiodesWHERE: Offline switch mode power suppliesWHY: Maximize output while minimizing energy consumption

SIC ADVANTAGE:

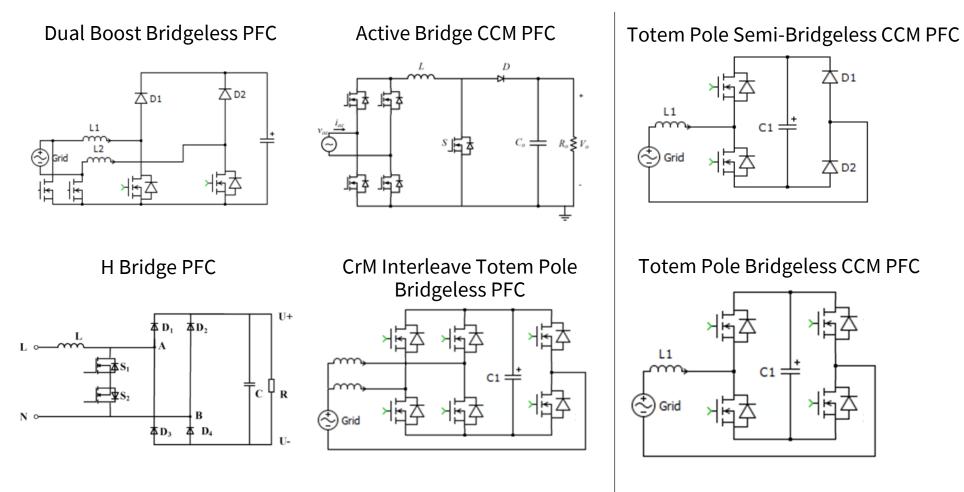
- Increases efficiency
- Reduces size
- Superior thermals



Servers

Power Grid

EFFICIENCY STANDARD OF SMPS FOR DATA CENTER


			Effic	iency		Power Factor ¹				80PLUS		
Requirement	Output/Load	10%	20%	50%	100%	10%	20%	50%	100%	115V non- redundant	115V Industrial	
	multi		90%	92%	89%		0.80	0.90	0.95	Platinum	Platinum	
Enormy Stor	single ≤ 500W			94%	91%		0.80	0.95	0.95	Titanium ²		
Energy Star 3.0	500W < single ≤ 1000W	83%	90%			0.65	0.80	0.95	0.95	Titanium ²		
	single > 1000W					0.80	0.90	0.95	0.95	Titanium ²		
Requirement	Output/Load	10%	20%	50%	100%	10%	20%	50%	100%	230V non- redundant	230V redundant	
Lot 9 (1-Mar-	multi		88%	92%	88%			0.90		Gold	Gold	
2020)	single		90%	94%	91%			0.95		Platinum ²	Platinum	
Lot 9 (1-Jan-	multi		90%	94%	91%			0.95		Platinum ²	Platinum	
2023)	single	90%	94%	96%	91%		· · · · · ·	0.95		Titanium	Titanium	

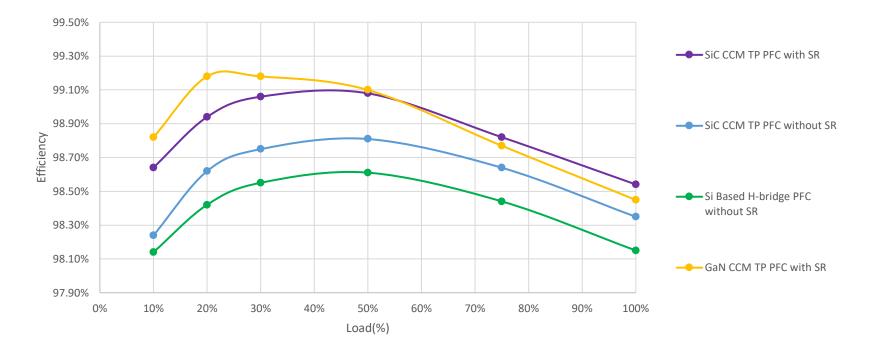
80 Plus test type		115	V internal	non-redur	ndant	230 V internal redundant			230 V EU internal non-redundant				
Percentage of rated load	lcon	10%	20%	50%	100%	10%	20%	50%	100%	10%	20%	50%	100%
80 Plus	80 PLUS		80%	80%	80%						82%	85%	82%
80 Plus Bronze	80 PLUS BRONZE		82%	85%	82%		81%	85%	81%		85%	88%	85%
80 Plus Silver	80 PILUS SILVER		85%	88%	85%		85%	89%	85%		87%	90%	87%
80 Plus Gold			87%	90%	87%		88%	92%	88%		90%	92%	89%
80 Plus Platinum	80 PLUS		90%	92%	89%		90%	94%	91%		92%	94%	90%
80 Plus Titanium	80 PLUS	90%	92%	94%	90%	90%	94%	96%	91%	90%	94%	96%	94%

>98.5% PFC peak efficiency is required for 80plus Titanium applications. Two approaches

© 2021 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc.

TOPOLOGIES OF PFC

PFC topologies before the adoption of WBG device


COMPARISON OF BRIDGE-LESS PFC SOLUTIONS

	# PFC Choke	# of Power Switch	Power density	Peak Efficiency	Cost
Si Conventional CCM PFC	1	3*	Medium	98.3%	Low
Si Active Bridge CCM PFC	1	6	Medium	98.9%	Highest
Si Dual Boost Bridgeless PFC	2	6	Lower	98.6%	Medium
Si Dual Boost Bridgeless PFC SR	2	6	Lower	98.9%	High
Si H Bridge PFC	1	6	High	98.6%	Medium
Si CrM Totem Pole Bridgeless PFC	2	6	Medium	98.9%	Highest
SiC CCM Totem Pole Semi-BL PFC	1	4	Highest	98.8%	Medium
*SiC CCM Totem Pole bridgeless PFC	1	4	Highest	99.1%	High
GaN CCM Totem Pole Semi-BL PFC	1	4	Highest	98.8%	High
GaN CCM Totem Pole bridgeless PFC	1	4	Highest	99.2%	Highest
GaN CRM Totem Pole bridgeless PFC	2	6	Medium	99.1%	Highest

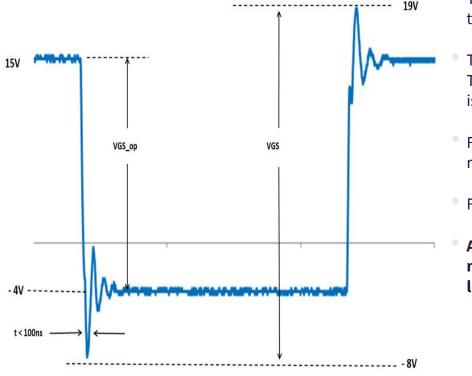
• SiC based CCM totem pole PFC can have higher efficiency and higher power density than Si based H-bridge PFC with similar or even lower cost.

EFFICIENCY COMPARISON OF PFC SOLUTIONS

3kW PFC Efficiency @ fsw=64kHz, 230Vac, 385Vout

- SiC based CCM totem pole PFC can have higher efficiency than Si based H-bridge PFC.
- GaN has efficiency advantage at light load. But with much higher Rdson over temperature, the efficiency and power delivery capability is compromised at higher power.

→ SiC is the clear choice for the power components for Totem pole PFC especially for high reliability applications.


Tips of Gate Driving with SiC MOSFETs

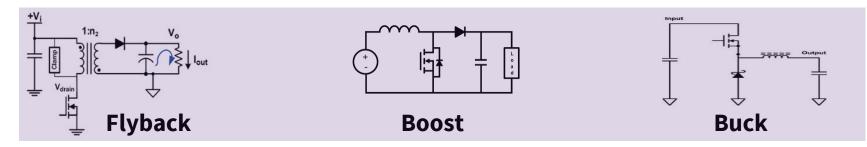
© 2021 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc.

GATE DRIVE VOLTAGE LEVEL

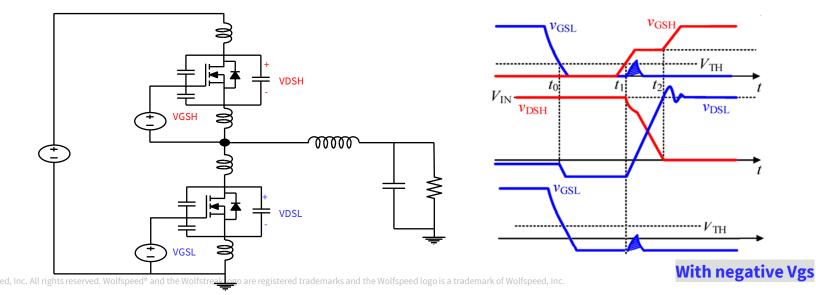
Vgs	Gate - Source voltage (Under transient events < 100 ns)	-8/+19	V	Fig. 29
V _{GS-op}	Gate - Source voltage (Recommended operating range)	-4/+15	V	

The first **V**_{GS} rating is the absolute max rating. The max **V**_{GS} rating allows for ringing and overshoots that will be superimposed on top of the continuous gate drive voltage.

The second **V**_{GS_OP} rating is the recommended max operating setting for turn-on and turn-off voltage. The max nominal power supply voltage for turn-on is recommended at 15V, and -4V for turn-off. This is recommended value for safe operation and long term reliability.

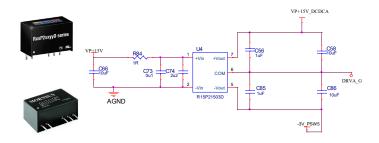

For nominal -4V, if considering tolerance +/-5%, the range is -4.2V/-3.8V. For very common -3V, the range will be -3.15V/-2.85V.

• For nominal +15V, if considering tolerance +/-5%, the range is 15.75V/14.25V.

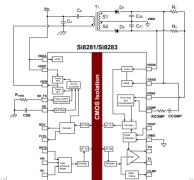

 Actually, if the layout is optimized, the negative gate bias can be -3V or -2V as long as there is no false turn-on. The benefit of using lower negative gate bias voltage is the Vf of body diode is lower.

WHY NEGATIVE DRIVING VOLTAGE?

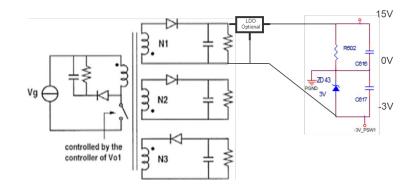
- Wolfspeed Gen3 SiC MOSFETs can safely operate at +15V/0V condition. Adding negative gate bias improves noise immunity, avoiding false turn-on in half bridge configuration.
- In single end power converter such as Flyback, Boost, or Buck converter, it is possible to use 0V turn-off voltage:

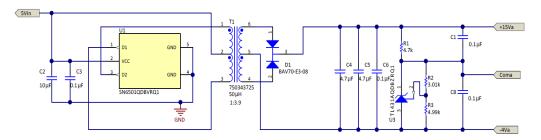


It is recommended to use negative voltage for Totem Pole half bridge topology due to cross talk



POSITIVE & NEGATIVE GATE DRIVER VOLTAGE SOLUTIONS


- OPTION 1 Integrated solution
 - Dedicated +15V/-3V power supply


- OPTION 3 On board In the driver
 - Gate driver IC with built in DC/DC controller (e.g. Si8281)

- OPTION 2 Discrete solution
 - 18V multi-outputs Aux power supply. Generate -3V by resistor and Zener diode

- OPTION 4 Build your own
 - Push-Pull Circuit from Texas Instruments TIDA-01605

DESIGN SUPPORT

Electrical simulation

https://www.wolfspeed.com/speedfit

https://go.wolfspeed.com/all-models

https://www.wolfspeed.com/power/ products/reference-designs

Reference designs

Application	Reference design name	Topology
Automotive	<u>6.6 kW Bi-Directional EV On-Board</u> <u>Charger</u>	AC to DC, DC to AC
Automotive	22kW Bi-directional High Efficiency DC/DC Converter	Bi-Directional DC to DC
Automotive & Renewable Energy	22kW Bi-directional High Efficiency Active Front End (AFE) Converter	Bi-Directional AC to DC
Renewable Energy	60 kW Interleaved Boost Converter	DC to DC
Server Power supply	<u>2.2 kW High Efficiency (80+</u> <u>Titanium) Bridgeless Totem-Pole</u> <u>PFC with SiC MOSFET</u>	AC to DC
Server Power supply	<u>6.6 kW High Frequency DC-DC</u> <u>Converter</u>	DC to DC

THANK YOU